

**Enzymatic Assay of β -HYDROXYACYL-COA DEHYDROGENASE
(EC 1.1.1.35)**

PRINCIPLE:

Abbreviations used:

β -NADH = β -Nicotinamide Adenine Dinucleotide, Reduced Form

HOADH = β -Hydroxyacyl-CoA Dehydrogenase

β -NAD = β -Nicotinamide Adenine Dinucleotide, Oxidized Form

CoA = Coenzyme A

CONDITIONS: T = 37°C, pH = 7.3, A_{340nm}, Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 100 mM Potassium Phosphate Buffer, pH 7.3 at 37°C
(Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 7.3 at 37°C with 1 M KOH.)
- B. 5.4 mM S-Acetoacetyl Coenzyme A Solution (SAAC)
(Prepare 1 ml in Reagent A using S-Acetoacetyl Coenzyme A, Sodium Salt, Sigma Prod. No. A-1625. Store on ice.)
- C. 6.4 mM β -Nicotinamide Adenine Dinucleotide, Reduced Form (β -NADH)
(Prepare 1 ml in cold Reagent A using β -Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Prod. No. N-8129. **PREPARE FRESH.**)
- D. β -Hydroxyacyl-CoA Dehydrogenase Enzyme Solution
(Immediately before use, prepare a solution containing 0.2 - 0.7 unit/ml of β -Hydroxyacyl-CoA Dehydrogenase in cold Reagent A.)

**Enzymatic Assay of β -HYDROXYACYL-COA DEHYDROGENASE
(EC 1.1.1.35)**

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test</u>	<u>Blank</u>
Reagent A (Buffer)	2.80	2.80
Reagent B (SAAC)	0.05	0.05
Reagent C (β -NADH)	0.05	0.05

Mix by inversion and equilibrate to 37°C. Monitor the $A_{340\text{nm}}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent D (Enzyme Solution)	0.10	-----
Deionized Water	-----	0.10

Immediately mix by inversion and record the decrease in $A_{340\text{nm}}$ for approximately 5 minutes. Obtain the $r A_{340\text{nm}}/\text{min}$ using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

$$\text{Units/ml enzyme} = \frac{(r A_{340\text{nm}}/\text{min Test} - r A_{340\text{nm}}/\text{min Blank})(3)(df)}{(6.22)(0.1)}$$

3 = Total volume (in milliliters) of assay

df = Dilution factor

6.22 = Millimolar extinction coefficient of β -NADH at 340 nm

0.1 = Volume (in milliliters) of enzyme used

$$\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

$$\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}$$

UNIT DEFINITION:

One unit will convert 1.0 μmole of acetoacetyl-CoA to β -hydroxybutyryl-CoA per minute at pH 7.3 at 37°C in the presence of β -NADH.

**Enzymatic Assay of β -HYDROXYACYL-COA DEHYDROGENASE
(EC 1.1.1.35)**

FINAL ASSAY CONCENTRATION:

In a 3.00 ml reaction mix, the final concentrations are 97 mM potassium phosphate, 0.09 mM S-acetoacetyl-coenzyme A, 0.1 mM β -nicotinamide adenine dinucleotide, reduced form and 0.02 - 0.07 unit β -hydroxyacyl-CoA-dehydrogenase.

REFERENCE:

Lynen, F. and Wieland, O. (1955) *Methods in Enzymology*, Volume I, 566-573.

NOTES:

1. This assay is based on the cited reference.
2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.