

# CERTIFIED REFERENCE MATERIALS

JRC-IRMM CATALOG 2015



More than 600 CRMs available

**ENVIRONMENTAL CRMs**

**FOOD CRMs**

**INCLUDING APPLICATION NOTES**

**CLINICAL CRMs**

**PHYSICAL PROPERTY CRMs**

**INDUSTRIAL CRMs**

**ISOTOPIC CRMs**

**SIGMA-ALDRICH®**



## TABLE OF CONTENTS

|                                                                      |    |
|----------------------------------------------------------------------|----|
| <b>INTRODUCTION</b>                                                  | 4  |
| <b>1 MATERIALS RELATED TO ENVIRONMENTAL ANALYSIS</b>                 | 5  |
| 1.1 PURE MATERIALS AND SYNTHETIC MIXTURES                            | 5  |
| 1.2 MATRIX MATERIALS                                                 | 15 |
| 1.2.1 CERTIFIED FOR THE TOTAL ELEMENT CONTENT                        | 15 |
| 1.2.2 CERTIFIED FOR THE EXTRACTABLE ELEMENT CONTENT AND SPECIES      | 21 |
| 1.2.3 CERTIFIED FOR ORGANIC POLLUTANTS                               | 24 |
| 1.2.4 OTHERS                                                         | 27 |
| <b>2 MATERIALS RELATED TO THE ANALYSIS OF FOOD AND FEEDING STUFF</b> | 27 |
| 2.1 PURE MATERIALS AND SYNTHETIC MIXTURES                            | 27 |
| 2.2 MATRIX MATERIALS                                                 | 29 |
| 2.2.1 CERTIFIED FOR GMO CONTENT                                      | 29 |
| 2.2.2 CERTIFIED FOR NATURAL TOXINS AND XENOBIOTICS                   | 36 |
| 2.2.3 CERTIFIED FOR THE TOTAL ELEMENT CONTENT                        | 40 |
| 2.2.4 CERTIFIED FOR PROXIMATES AND CONVENTIONAL PROPERTIES           | 42 |
| 2.2.5 CERTIFIED FOR MICROBIOLOGICAL PROPERTIES                       | 46 |
| 2.2.6 CERTIFIED FOR VETERINARY DRUGS                                 | 47 |
| 2.2.7 CERTIFIED FOR IDENTITY                                         | 49 |
| 2.2.8 OTHERS                                                         | 49 |
| <b>3 MATERIALS RELATED TO CLINICAL CHEMISTRY</b>                     | 49 |
| 3.1 PURE STANDARDS AND SYNTHETIC MATERIALS                           | 49 |
| 3.2 MATRIX MATERIALS                                                 | 50 |
| 3.2.1 CERTIFIED FOR THE HORMONE CONTENT                              | 50 |
| 3.2.2 CERTIFIED FOR THE TOTAL ELEMENT CONTENT AND OTHER PROPERTIES   | 51 |
| 3.2.3 CERTIFIED FOR PROTEIN CONTENT                                  | 52 |
| 3.2.4 CERTIFIED FOR CATALYTIC ACTIVITY                               | 54 |
| 3.2.5 CERTIFIED FOR DNA SEQUENCE                                     | 54 |
| 3.2.6 OTHERS                                                         | 55 |
| <b>4 MATERIALS CERTIFIED FOR PHYSICAL PROPERTIES</b>                 | 55 |
| 4.1 CERTIFIED FOR THERMAL PROPERTIES                                 | 55 |
| 4.2 CERTIFIED FOR MECHANICAL PROPERTIES                              | 57 |
| 4.3 CERTIFIED FOR MORPHOLOGICAL PROPERTIES                           | 57 |
| <b>5 MATERIALS RELATED TO INDUSTRIAL APPLICATIONS</b>                | 59 |
| 5.1 CERTIFIED FOR COMPOSITION                                        | 59 |
| 5.2 CERTIFIED FOR TRACE ELEMENT CONTENT                              | 61 |
| 5.3 OTHERS                                                           | 66 |
| <b>6 MATERIALS RELATED TO ISOTOPIC MEASUREMENTS</b>                  | 66 |
| 6.1 CERTIFIED FOR ISOTOPE ABUNDANCE RATIO (AMOUNT RATIO)             | 66 |
| 6.2 CERTIFIED FOR ISOTOPE AMOUNT CONTENT                             | 68 |
| INDEX                                                                | 70 |
| NUMERICAL LIST                                                       | 70 |
| ALPHABETICAL LIST                                                    | 82 |
| APPLICATION NOTES                                                    | 94 |

## INTRODUCTION

Public confidence in measurement results is important in many aspects of modern society, including consumer protection in food consumption, health-care, environmental protection, and fair trade. Certified Reference Materials (CRMs) are cornerstones of modern analytical quality assurance because they allow calibration of instruments, validation of methods, and quality control of methods and laboratories based on traceability and comparability of measurement results.

The Institute for Reference Materials and Measurements (IRMM) provides

**IRMM certified reference materials**, produced by the EC-JRC-IRMM

**BCR® certified reference materials** (BCR® is a registered trademark of the European Commission), for which production was supported by research funding of the European Commission, DG Research and

**ERM® certified reference materials** (ERM® is a registered trademark of the EC), a new brand launched through the ERM® Initiative ([www.erm-crm.org](http://www.erm-crm.org)).

These CRMs are produced according to specific Guidelines of the European Commission which take into account the relevant ISO Guides 34 and 35.

The ERM® reference materials have undergone an additional uncompromising peer evaluation by the ERM® partners:

Federal Institute for Materials Research and Testing (BAM), Germany  
LGC Standards, United Kingdom  
IRMM, JRC, European Commission

to guarantee highest quality and reliability.

## Certificates

Certificates carry a certified value with its uncertainty which is traceable either to a SI unit or an internationally accepted reference. The intended use for each CRM is stated on the certificate.

CRMs are stored under controlled conditions which ensure their stability. Monitoring programmes have been set up to control CRM stability during the whole shelf-life. At present IRMM's Reference Materials Unit offers about 600 different CRMs. A complete list of these CRMs can be accessed directly via the IRMM homepage:

[irmm.jrc.ec.europa.eu](http://irmm.jrc.ec.europa.eu)

## Availability

As CRMs should become regularly used items in any measurement laboratory, IRMM's Reference Materials Unit continues its effort to supply CRMs in sufficient amount to cover market needs. However, in exceptional cases where only limited amounts are available, it reserves the right to restrict and/or refuse orders. The reference materials contained in this catalogue are made available world-wide through the IRMM's Reference Materials Unit and its authorised distributors.

If samples are purchased through **UNAUTHORISED COMPANIES**, the IRMM cannot be held responsible for the integrity of the materials (especially in case of potentially unstable materials) nor, for the accuracy and/or completeness of the accompanying information (certificates, reports, etc.).

## 1 MATERIALS RELATED TO ENVIRONMENTAL ANALYSIS

### 1.1 PURE MATERIALS AND SYNTHETIC MIXTURES

| Cat. No. | Substance                                         | Purity (g/g) |   |           |         |
|----------|---------------------------------------------------|--------------|---|-----------|---------|
|          | Polycyclic aromatic compounds                     |              |   |           |         |
| BCR046   | BENZO[b]CHRYSENE                                  | 0.994        | + | 0.006     |         |
|          |                                                   |              | - | 0.008     |         |
| BCR047   | BENZO[b]FLUORANTHENE                              | 0.997        | 4 | ± 0.002 6 |         |
| BCR048R  | BENZO[k]FLUORANTHENE (unit size 10 mg)            | 0.997        | + | 0.003     |         |
|          |                                                   |              | - | 0.004     |         |
| BCR049   | BENZO[j]FLUORANTHENE                              | 0.997        | ± | 0.003     |         |
|          |                                                   |              | ± | 0.006     |         |
| BCR050   | BENZO[e]PYRENE                                    | 0.991        | + | 0.009     |         |
|          |                                                   |              | - | 0.010     |         |
| BCR052   | BENZO[ghi]PERYLENE                                | 0.992        | 3 | ± 0.002 1 |         |
| BCR077R  | 1-METHYLCHRYSENE (unit size 10 mg)                | 0.991        | ± | 0.007     |         |
| BCR078R  | 2-METHYLCHRYSENE (unit size 10 mg)                | 0.993        | ± | 0.005     |         |
| BCR079R  | 3-METHYLCHRYSENE (unit size 10 mg)                | 0.993        | ± | 0.005     |         |
| BCR080R  | 4-METHYLCHRYSENE (unit size 10 mg)                | 0.994        | ± | 0.004     |         |
| BCR081R  | 5-METHYLCHRYSENE (unit size 10 mg)                | 0.997        | 3 | ± 0.001 3 |         |
| BCR091   | ANTHANTHRENE                                      | 0.996        | ± | 0.004     |         |
| BCR092   | 10-AZABENZO[a]PYRENE                              | 0.996        | ± | 0.006     |         |
| BCR093R  | 1-METHYLBENZ[a]ANTHRACENE (unit size 10 mg)       | 0.996        | ± | 0.005     |         |
| BCR094   | DIBENZ[a,c]ANTHRACENE                             | 0.996        | ± | 0.004     |         |
| BCR095   | DIBENZ[a,j]ANTHRACENE                             | 0.997        | 8 | ± 0.002 5 |         |
| BCR096   | DIBENZO[a,l]PYRENE                                | 0.997        | 2 | ± 0.002 5 |         |
| BCR097   | BENZO[a]FLUORANTHENE                              | 0.996        | ± | 0.004     |         |
| BCR133   | DIBENZO[a,e]PYRENE                                | 0.996        | + | 0.004     |         |
|          |                                                   |              | - | 0.005     |         |
| BCR134   | BENZO[c]PHENANTHRENE                              | 0.996        | 8 | ± 0.001 4 |         |
| BCR136R  | BENZO[b]NAPHTHO[2,3-d]THIOPHENE (unit size 10 mg) | 0.994        | ± | 0.006     |         |
| BCR137R  | BENZO[b]NAPHTHO[1,2-d]THIOPHENE (unit size 10 mg) | 0.996        | 6 | ± 0.002 9 |         |
| BCR138   | DIBENZ[a,h]ANTHRACENE                             | 0.990        | ± | 0.007     |         |
| BCR139   | BENZO[ghi]FLUORANTHENE                            | 0.995        | ± | 0.004     |         |
| BCR140   | BENZO[c]CHRYSENE                                  | 0.996        | + | 0.004     |         |
|          |                                                   |              | - | 0.005     |         |
| BCR153R  | DIBENZ[a,h]ACRIDINE (unit size 10 mg)             | 0.999        | 2 | ± 0.000 6 |         |
| BCR154   | DIBENZ[a,j]ACRIDINE                               | 0.999        | 0 | +         | 0.000 7 |
|          |                                                   |              | - | 0.001 0   |         |
| BCR155   | DIBENZ[a,c]ACRIDINE                               | 0.999        | 1 | +         | 0.000 7 |
|          |                                                   |              | - | 0.000 8   |         |
| BCR156R  | DIBENZ[c,h]ACRIDINE (unit size 10 mg)             | 0.993        | 6 | ± 0.002 1 |         |
| BCR157   | BENZ[a]ACRIDINE                                   | 0.998        | 2 | ± 0.001 8 |         |
| BCR158   | BENZ[c]ACRIDINE                                   | 0.998        | 7 | +         | 0.001 3 |
|          |                                                   |              | - | 0.001 8   |         |
| BCR159   | DIBENZO[a,h]PYRENE                                | 0.993        | ± | 0.007     |         |

| Cat. No. | Substance                      | Purity (g/g)      |
|----------|--------------------------------|-------------------|
| BCR160R  | FLUORANTHENE (unit size 10 mg) | 0.996 + 0.004     |
|          |                                | - 0.005           |
| BCR168   | PICENE (unit size 10 mg)       | 0.998 + 0.001 3   |
|          |                                | - 0.004           |
| BCR177R  | PYRENE (unit size 10 mg)       | 0.998 0 ± 0.000 4 |

Availability: Amber vials containing about 100 mg of powdered material.

| Cat. No.                             | Substance                    | Purity (g/g)      |
|--------------------------------------|------------------------------|-------------------|
| <b>Polycyclic aromatic compounds</b> |                              |                   |
| BCR152                               | DIBENZ[a,i]ACRIDINE          | 0.998 5 + 0.001 0 |
|                                      |                              | - 0.000 8         |
| BCR265                               | DIBENZO[a,e]FLUORANTHENE     | 0.998 5 + 0.001 6 |
|                                      |                              | - 0.001 0         |
| BCR266                               | 7H-DIBENZO[c,g]CARBAZOLE     | 0.997 1 ± 0.001 6 |
| BCR267                               | INDENO[1,2,3-cd]FLUORANTHENE | 0.998 6 + 0.000 9 |
|                                      |                              | - 0.000 8         |
| BCR269                               | CHRYSENE                     | 0.992 8 ± 0.002 8 |
| BCR270                               | TRIPHENYLENE                 | 0.998 4 + 0.001 0 |
|                                      |                              | - 0.000 6         |
| BCR271                               | BENZ[a]ANTHRACENE            | 0.998 4 ± 0.000 9 |
| BCR272                               | CORONENE                     | 0.998 9 + 0.000 6 |
|                                      |                              | - 0.000 4         |

Availability: Amber vials containing about 20 mg of powdered material.

| Cat. No.                                      | Substance                            | Purity (g/g)      |
|-----------------------------------------------|--------------------------------------|-------------------|
| <b>Nitro-polycyclic aromatic hydrocarbons</b> |                                      |                   |
| BCR305                                        | 1-NITROPYRENE                        | 0.997 6 ± 0.000 7 |
| BCR306                                        | 1-NITRONAPHTALENE                    | 0.996 9 ± 0.001 0 |
| BCR307                                        | 2-NITRONAPHTALENE                    | 0.997 7 + 0.000 9 |
|                                               |                                      | - 0.001 1         |
| BCR308                                        | 9-NITROANTHRACENE                    | 0.997 5 ± 0.001 0 |
| BCR309                                        | 6-NITROCHRYSENE                      | 0.989 ± 0.004     |
| BCR310                                        | 3-NITROFLUORANTHENE                  | 0.996 8 ± 0.001 2 |
|                                               |                                      | - 0.002 1         |
| BCR311                                        | 6-NITROBENZO[a]PYRENE                | 0.997 8 + 0.000 8 |
|                                               |                                      | - 0.001 0         |
| BCR312                                        | 2-NITRO-7-METHOXYNAPHTHO[2.1-b]FURAN | 0.998 4 ± 0.000 7 |

Availability: Amber vials containing about 10 mg of powdered material.

| Cat. No.                                           | Substance                                     | Purity (g/g)      |
|----------------------------------------------------|-----------------------------------------------|-------------------|
| <b>Oxygenated polycyclic aromatic hydrocarbons</b> |                                               |                   |
| BCR337                                             | DIBENZO[ <i>b,d</i> ]FURAN                    | 0.987 ± 0.007     |
| BCR338                                             | 4H-CYCLOPENTA[ <i>def</i> ]PHENANTHREN-4-ONE  | 0.995 1 ± 0.003 0 |
| BCR339                                             | 6H-BENZO[ <i>c,d</i> ]PYREN-6-ONE             | 0.988 ± 0.009     |
| BCR340                                             | BENZO[ <i>b</i> ]NAPHTHO[1,2- <i>d</i> ]FURAN | 0.997 ± 0.003     |
|                                                    |                                               | - 0.005           |
| BCR341                                             | BENZO[ <i>b</i> ]NAPHTHO[2,1- <i>d</i> ]FURAN | 0.996 + 0.004     |
|                                                    |                                               | - 0.005           |
| BCR342                                             | BENZO[ <i>a</i> ]FLUORENONE                   | 0.997 9 + 0.002 1 |
|                                                    |                                               | - 0.002 2         |

Availability: Amber vials containing about 10 mg of powdered material.

| Cat. No.                         | Substance                                 | Purity (g/g)      |
|----------------------------------|-------------------------------------------|-------------------|
| <b>Polychlorinated biphenyls</b> |                                           |                   |
| IUPAC No.                        |                                           |                   |
| BCR289                           | 8 2,4'- DICHLOROBIPHENYL                  | 0.996 3 + 0.005   |
|                                  |                                           | - 0.001 8         |
| BCR290                           | 20 2,3,3'- TRICHLOROBIPHENYL              | 0.998 5 ± 0.001 3 |
| BCR291                           | 28 2,4,4'- TRICHLOROBIPHENYL              | 0.997 9 ± 0.001 3 |
| BCR293                           | 52 2,2',5,5'- TETRACHLOROBIPHENYL         | 0.995 9 ± 0.002 5 |
| BCR296                           | 138 2,2',3,4,4',5'- HEXACHLOROBIPHENYL    | 0.999 2 ± 0.000 7 |
| BCR297                           | 153 2,2',4,4',5,5'- HEXACHLOROBIPHENYL    | 0.999 4 + 0.000 9 |
|                                  |                                           | - 0.000 5         |
| BCR298                           | 180 2,2',3,4,4',5,5'- HEPTACHLOROBIPHENYL | 0.995 7 ± 0.001 4 |

Availability: Amber vials containing about 25 mg of powdered material.

#### Cat. No. BCR365 - Polychlorinated biphenyls in iso-octane

| IUPAC No. | Content in mg/kg | Concentration in g/m <sup>3</sup> at 25 °C <sup>1)</sup> |
|-----------|------------------|----------------------------------------------------------|
| 8         | 11.4 ± 0.4       | (7.8 ± 0.2)                                              |
| 20        | 15.2 ± 0.9       | (10.5 ± 0.7)                                             |
| 28        | 24.8 ± 1.1       | (17.1 ± 0.8)                                             |
| 35        | 14.3 ± 0.8       | (9.8 ± 0.5)                                              |
| 52        | 14.8 ± 0.6       | (10.2 ± 0.4)                                             |
| 101       | 14.4 ± 0.6       | (9.9 ± 0.4)                                              |
| 118       | 14.9 ± 0.8       | (10.3 ± 0.6)                                             |
| 138       | 8.6 ± 0.6        | (5.9 ± 0.5)                                              |
| 153       | 14.2 ± 0.6       | (9.8 ± 0.4)                                              |
| 180       | 15.2 ± 0.6       | (10.4 ± 0.3)                                             |

1) Not certified concentrations (g/m<sup>3</sup>) were calculated from the certified content assuming a density of iso-octane of 687.77 kg/m<sup>3</sup> at 25 °C.

Availability: Unit consisting of a pair of dark glass ampoules, each containing 2 cm<sup>3</sup> of 2,2,4-Trimethylpentane (iso-octane) sealed under nitrogen. The pair of ampoules is supplied in a metal can which is packed with absorbent material

## Cat. No. BCR614 - Polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs)

| Congener                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                    | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD         | 0.137                                 | 0.004                     | 0.098 3                                                      | 0.002 9                                                    |
| 1,2,3,7,8-P <sub>5</sub> CDD       | 0.698                                 | 0.014                     | 0.501                                                        | 0.010                                                      |
| 1,2,3,4,7,8-HCDD                   | 0.688                                 | 0.021                     | 0.494                                                        | 0.015                                                      |
| 1,2,3,6,7,8-HCDD                   | 0.696                                 | 0.006                     | 0.500                                                        | 0.004                                                      |
| 1,2,3,7,8,9-HCDD                   | 0.705                                 | 0.008                     | 0.506                                                        | 0.006                                                      |
| 1,2,3,4,6,7,8-HCDD                 | 1.400                                 | 0.020                     | 1.005                                                        | 0.014                                                      |
| 1,2,3,4,6,7,8,9-O8CDD              | 1.396                                 | 0.007                     | 1.001                                                        | 0.005                                                      |
| 2,3,7,8-T <sub>4</sub> CDF         | 0.139 7                               | 0.001 1                   | 0.100 2                                                      | 0.000 8                                                    |
| 1,2,3,7,8-P <sub>5</sub> CDF       | 0.707                                 | 0.013                     | 0.507                                                        | 0.009                                                      |
| 2,3,4,7,8-P <sub>5</sub> CDF       | 0.698                                 | 0.005                     | 0.501                                                        | 0.004                                                      |
| 1,2,3,4,7,8-HCDF                   | 0.700                                 | 0.006                     | 0.502                                                        | 0.005                                                      |
| 1,2,3,6,7,8-HCDF                   | 0.698                                 | 0.005                     | 0.501                                                        | 0.004                                                      |
| 1,2,3,7,8,9-HCDF                   | 0.699                                 | 0.009                     | 0.502                                                        | 0.007                                                      |
| 2,3,4,6,7,8-HCDF                   | 0.694                                 | 0.007                     | 0.498                                                        | 0.005                                                      |
| 1,2,3,4,6,7,8-HCDF                 | 1.396                                 | 0.008                     | 1.001                                                        | 0.006                                                      |
| 1,2,3,4,7,8,9-HCDF                 | 1.394                                 | 0.030                     | 1.001                                                        | 0.022                                                      |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 1.397                                 | 0.024                     | 1.002                                                        | 0.017                                                      |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

## Cat. No. BCR614

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                                    | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.9                                  | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.07                      | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.94                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.95                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.87                                 | 0.16                      | 20.00                                                        | 0.12                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.02                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.90                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.10                      | 10.00                                                        | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.93                                 | 0.10                      | 10.00                                                        | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 10.00                                                        | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.92                                 | 0.20                      | 20.03                                                        | 0.15                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.87                                 | 0.24                      | 20.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.88                                 | 0.25                      | 20.01                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.94                                 | 0.08                      | 10.00                                                        | 0.06                                                       |

**Cat. No. BCR614S1**

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| (µg/kg)                                            |                                       | (µg/L)                    |                                                              |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD                         | 0.273                                 | 0.008                     | 0.196                                                        | 0.006                                                      |
| 1,2,3,7,8-P <sub>5</sub> CDD                       | 1.394                                 | 0.027                     | 1.000                                                        | 0.020                                                      |
| 1,2,3,4,7,8-HCDD                                   | 1.37                                  | 0.05                      | 0.986                                                        | 0.030                                                      |
| 1,2,3,6,7,8-HCDD                                   | 1.391                                 | 0.010                     | 0.998                                                        | 0.007                                                      |
| 1,2,3,7,8,9-HCDD                                   | 1.408                                 | 0.015                     | 1.011                                                        | 0.011                                                      |
| 1,2,3,4,6,7,8-HCDD                                 | 2.80                                  | 0.04                      | 2.006                                                        | 0.028                                                      |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDD                 | 2.787                                 | 0.010                     | 2.000                                                        | 0.007                                                      |
| 2,3,7,8-T <sub>4</sub> CDF                         | 0.279 0                               | 0.002 1                   | 0.200 2                                                      | 0.001 5                                                    |
| 1,2,3,7,8-P <sub>5</sub> CDF                       | 1.412                                 | 0.025                     | 1.013                                                        | 0.018                                                      |
| 2,3,4,7,8-P <sub>5</sub> CDF                       | 1.395                                 | 0.008                     | 1.001                                                        | 0.006                                                      |
| 1,2,3,4,7,8-HCDF                                   | 1.398                                 | 0.011                     | 1.003                                                        | 0.008                                                      |
| 1,2,3,6,7,8-HCDF                                   | 1.393                                 | 0.009                     | 1.000                                                        | 0.006                                                      |
| 1,2,3,7,8,9-HCDF                                   | 1.397                                 | 0.017                     | 1.002                                                        | 0.012                                                      |
| 2,3,4,6,7,8-HCDF                                   | 1.387                                 | 0.012                     | 0.995                                                        | 0.009                                                      |
| 1,2,3,4,6,7,8-HCDF                                 | 2.787                                 | 0.012                     | 2.000                                                        | 0.009                                                      |
| 1,2,3,4,7,8,9-HCDF                                 | 2.78                                  | 0.06                      | 2.00                                                         | 0.05                                                       |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF                 | 2.79                                  | 0.05                      | 2.00                                                         | 0.04                                                       |
|                                                    |                                       |                           |                                                              |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.9                                  | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.07                      | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.94                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.86                                 | 0.16                      | 19.99                                                        | 0.11                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.06                      | 10.00                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.89                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.11                      | 9.99                                                         | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.92                                 | 0.10                      | 9.99                                                         | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 9.99                                                         | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.90                                 | 0.20                      | 20.02                                                        | 0.14                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.86                                 | 0.24                      | 19.99                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.87                                 | 0.25                      | 20.00                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.93                                 | 0.07                      | 10.00                                                        | 0.05                                                       |

1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.

2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.

3) Non-certified values.

**Cat. No. BCR614S2**

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| (µg/kg)                                            |                                       |                           | (µg/L)                                                       |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD                         | 1.09                                  | 0.04                      | 0.785                                                        | 0.023                                                      |
| 1,2,3,7,8-P <sub>5</sub> CDD                       | 5.57                                  | 0.11                      | 4.00                                                         | 0.08                                                       |
| 1,2,3,4,7,8-HCDD                                   | 5.49                                  | 0.17                      | 3.94                                                         | 0.12                                                       |
| 1,2,3,6,7,8-HCDD                                   | 5.56                                  | 0.04                      | 3.992                                                        | 0.027                                                      |
| 1,2,3,7,8,9-HCDD                                   | 5.63                                  | 0.06                      | 4.04                                                         | 0.05                                                       |
| 1,2,3,4,6,7,8-HCDD                                 | 11.18                                 | 0.16                      | 8.02                                                         | 0.11                                                       |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDD                 | 11.15                                 | 0.04                      | 8.000                                                        | 0.027                                                      |
| 2,3,7,8-T <sub>4</sub> CDF                         | 1.116                                 | 0.008                     | 0.801                                                        | 0.006                                                      |
| 1,2,3,7,8-P <sub>5</sub> CDF                       | 5.65                                  | 0.10                      | 4.05                                                         | 0.07                                                       |
| 2,3,4,7,8-P <sub>5</sub> CDF                       | 5.58                                  | 0.03                      | 4.004                                                        | 0.022                                                      |
| 1,2,3,4,7,8-HCDF                                   | 5.59                                  | 0.05                      | 4.01                                                         | 0.04                                                       |
| 1,2,3,6,7,8-HCDF                                   | 5.57                                  | 0.04                      | 3.999                                                        | 0.024                                                      |
| 1,2,3,7,8,9-HCDF                                   | 5.59                                  | 0.07                      | 4.01                                                         | 0.05                                                       |
| 2,3,4,6,7,8-HCDF                                   | 5.55                                  | 0.05                      | 3.98                                                         | 0.04                                                       |
| 1,2,3,4,6,7,8-HCDF                                 | 11.15                                 | 0.05                      | 8.00                                                         | 0.04                                                       |
| 1,2,3,4,7,8,9-HCDF                                 | 11.14                                 | 0.24                      | 7.99                                                         | 0.17                                                       |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF                 | 11.16                                 | 0.19                      | 8.01                                                         | 0.14                                                       |
|                                                    |                                       |                           |                                                              |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.9                                  | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.07                      | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.94                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.86                                 | 0.16                      | 19.99                                                        | 0.11                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.06                      | 10.00                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.89                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.11                      | 9.99                                                         | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.93                                 | 0.10                      | 9.99                                                         | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 9.99                                                         | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.90                                 | 0.20                      | 20.02                                                        | 0.15                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.86                                 | 0.24                      | 19.99                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.87                                 | 0.25                      | 20.00                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.93                                 | 0.08                      | 10.00                                                        | 0.06                                                       |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

**Cat. No. BCR614S3**

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| (µg/kg)                                            |                                       |                           | (µg/L)                                                       |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD                         | 5.47                                  | 0.16                      | 3.92                                                         | 0.12                                                       |
| 1,2,3,7,8-P <sub>5</sub> CDD                       | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| 1,2,3,4,7,8-HCDD                                   | 27.5                                  | 0.9                       | 19.7                                                         | 0.6                                                        |
| 1,2,3,6,7,8-HCDD                                   | 27.81                                 | 0.19                      | 19.96                                                        | 0.14                                                       |
| 1,2,3,7,8,9-HCDD                                   | 28.17                                 | 0.30                      | 20.21                                                        | 0.21                                                       |
| 1,2,3,4,6,7,8-HCDD                                 | 55.9                                  | 0.8                       | 40.1                                                         | 0.6                                                        |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDD                 | 55.74                                 | 0.19                      | 40.00                                                        | 0.14                                                       |
| 2,3,7,8-T <sub>4</sub> CDF                         | 5.58                                  | 0.04                      | 4.003                                                        | 0.029                                                      |
| 1,2,3,7,8-P <sub>5</sub> CDF                       | 28.2                                  | 0.5                       | 20.3                                                         | 0.4                                                        |
| 2,3,4,7,8-P <sub>5</sub> CDF                       | 27.90                                 | 0.16                      | 20.02                                                        | 0.11                                                       |
| 1,2,3,4,7,8-HCDF                                   | 27.96                                 | 0.22                      | 20.06                                                        | 0.16                                                       |
| 1,2,3,6,7,8-HCDF                                   | 27.87                                 | 0.17                      | 20.00                                                        | 0.12                                                       |
| 1,2,3,7,8,9-HCDF                                   | 27.9                                  | 0.4                       | 20.04                                                        | 0.24                                                       |
| 2,3,4,6,7,8-HCDF                                   | 27.73                                 | 0.23                      | 19.90                                                        | 0.17                                                       |
| 1,2,3,4,6,7,8-HCDF                                 | 55.74                                 | 0.24                      | 40.00                                                        | 0.17                                                       |
| 1,2,3,4,7,8,9-HCDF                                 | 55.7                                  | 1.2                       | 40.0                                                         | 0.9                                                        |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF                 | 55.8                                  | 1.0                       | 40.0                                                         | 0.7                                                        |
|                                                    |                                       |                           |                                                              |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.9                                  | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.07                      | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.95                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.87                                 | 0.16                      | 20.00                                                        | 0.11                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.02                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.90                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.11                      | 10.00                                                        | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.93                                 | 0.10                      | 10.00                                                        | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 10.00                                                        | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.91                                 | 0.20                      | 20.03                                                        | 0.14                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.87                                 | 0.24                      | 20.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.88                                 | 0.25                      | 20.00                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.93                                 | 0.07                      | 10.00                                                        | 0.05                                                       |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

Cat. No. BCR614S4

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| (µg/kg)                                            |                                       |                           | (µg/L)                                                       |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD                         | 27.3                                  | 0.8                       | 9.6                                                          | 0.6                                                        |
| 1,2,3,7,8-P <sub>5</sub> CDD                       | 139.3                                 | 2.7                       | 100.0                                                        | 2.0                                                        |
| 1,2,3,4,7,8-HCDD                                   | 137                                   | 5                         | 98.6                                                         | 3.0                                                        |
| 1,2,3,6,7,8-HCDD                                   | 139.1                                 | 1.0                       | 99.8                                                         | 0.7                                                        |
| 1,2,3,7,8,9-HCDD                                   | 140.8                                 | 1.5                       | 101.1                                                        | 1.1                                                        |
| 1,2,3,4,6,7,8-HCDD                                 | 280                                   | 4                         | 200.6                                                        | 2.8                                                        |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDD                 | 278.7                                 | 1.0                       | 200.0                                                        | 0.7                                                        |
| 2,3,7,8-T <sub>4</sub> CDF                         | 27.89                                 | 0.21                      | 20.02                                                        | 0.15                                                       |
| 1,2,3,7,8-P <sub>5</sub> CDF                       | 141.2                                 | 2.5                       | 101.3                                                        | 1.8                                                        |
| 2,3,4,7,8-P <sub>5</sub> CDF                       | 139.5                                 | 0.8                       | 100.1                                                        | 0.6                                                        |
| 1,2,3,4,7,8-HCDF                                   | 139.8                                 | 1.1                       | 100.3                                                        | 0.8                                                        |
| 1,2,3,6,7,8-HCDF                                   | 139.3                                 | 0.9                       | 100.0                                                        | 0.6                                                        |
| 1,2,3,7,8,9-HCDF                                   | 139.6                                 | 1.7                       | 100.2                                                        | 1.2                                                        |
| 2,3,4,6,7,8-HCDF                                   | 138.7                                 | 1.2                       | 99.5                                                         | 0.9                                                        |
| 1,2,3,4,6,7,8-HCDF                                 | 278.7                                 | 1.2                       | 200.0                                                        | 0.9                                                        |
| 1,2,3,4,7,8,9-HCDF                                 | 278                                   | 6                         | 200                                                          | 5                                                          |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF                 | 279                                   | 5                         | 200                                                          | 4                                                          |
|                                                    |                                       |                           |                                                              |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.99                                 | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.07                      | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.94                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.86                                 | 0.16                      | 19.99                                                        | 0.11                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.06                      | 10.00                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.89                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.11                      | 9.99                                                         | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.92                                 | 0.10                      | 9.99                                                         | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 9.99                                                         | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.90                                 | 0.20                      | 20.02                                                        | 0.15                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.86                                 | 0.24                      | 19.99                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.87                                 | 0.25                      | 20.00                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.93                                 | 0.08                      | 10.00                                                        | 0.06                                                       |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

**Cat. No. BCR614S5**

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                                    | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| 2,3,7,8-T <sub>4</sub> CDD                         | 109                                   | 4                         | 78.5                                                         | 2.3                                                        |
| 1,2,3,7,8-P <sub>5</sub> CDD                       | 557                                   | 11                        | 400                                                          | 8                                                          |
| 1,2,3,4,7,8-HCDD                                   | 549                                   | 17                        | 394                                                          | 12                                                         |
| 1,2,3,6,7,8-HCDD                                   | 556                                   | 4                         | 399.1                                                        | 2.7                                                        |
| 1,2,3,7,8,9-HCDD                                   | 563                                   | 6                         | 404                                                          | 5                                                          |
| 1,2,3,4,6,7,8-HCDD                                 | 1118                                  | 16                        | 802                                                          | 11                                                         |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDD                 | 1115                                  | 4                         | 799.9                                                        | 2.7                                                        |
| 2,3,7,8-T <sub>4</sub> CDF                         | 1116                                  | 0.8                       | 80.1                                                         | 0.6                                                        |
| 1,2,3,7,8-P <sub>5</sub> CDF                       | 565                                   | 0                         | 405                                                          | 7                                                          |
| 2,3,4,7,8-P <sub>5</sub> CDF                       | 558                                   | 3                         | 400.4                                                        | 2.2                                                        |
| 1,2,3,4,7,8-HCDF                                   | 559                                   | 5                         | 401                                                          | 4                                                          |
| 1,2,3,6,7,8-HCDF                                   | 557                                   | 4                         | 399.9                                                        | 2.4                                                        |
| 1,2,3,7,8,9-HCDF                                   | 559                                   | 7                         | 401                                                          | 5                                                          |
| 2,3,4,6,7,8-HCDF                                   | 555                                   | 5                         | 398                                                          | 4                                                          |
| 1,2,3,4,6,7,8-HCDF                                 | 1115                                  | 5                         | 800                                                          | 4                                                          |
| 1,2,3,4,7,8,9-HCDF                                 | 1114                                  | 24                        | 799                                                          | 17                                                         |
| 1,2,3,4,6,7,8,9-O <sub>8</sub> CDF                 | 1116                                  | 19                        | 801                                                          | 14                                                         |
|                                                    |                                       |                           |                                                              |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 13.95                                 | 0.06                      | 10.01                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 13.9                                  | 0.4                       | 10.00                                                        | 0.23                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 13.98                                 | 0.7                       | 10.03                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD                   | 13.95                                 | 0.10                      | 10.01                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 27.9                                  | 0.6                       | 20.0                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 27.86                                 | 0.16                      | 19.99                                                        | 0.11                                                       |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 13.96                                 | 0.09                      | 10.02                                                        | 0.07                                                       |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF       | 13.93                                 | 0.24                      | 10.00                                                        | 0.17                                                       |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 13.94                                 | 0.06                      | 10.00                                                        | 0.05                                                       |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 13.89                                 | 0.07                      | 9.97                                                         | 0.05                                                       |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 13.93                                 | 0.11                      | 9.99                                                         | 0.08                                                       |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF                   | 13.93                                 | 0.10                      | 9.99                                                         | 0.07                                                       |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 13.93                                 | 0.09                      | 9.99                                                         | 0.06                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 27.90                                 | 0.20                      | 20.02                                                        | 0.15                                                       |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF                 | 27.86                                 | 0.24                      | 19.99                                                        | 0.17                                                       |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 27.87                                 | 0.25                      | 20.00                                                        | 0.18                                                       |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD         | 13.93                                 | 0.08                      | 10.00                                                        | 0.06                                                       |

**Cat. No. BCR614S6**

| Congener                                     | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                              | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDF | 139.3                                 | 2.3                       | 100.0                                                        | 1.7                                                        |
| <sup>13</sup> C-1,2,3,7,8,9-HCDF             | 139.4                                 | 0.9                       | 100.0                                                        | 0.7                                                        |
| <sup>13</sup> C-1,2,3,4,7,8,9-HCDF           | 278.7                                 | 2.4                       | 200.0                                                        | 1.7                                                        |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

#### Cat. No. BCR614S7

| Congener                                           | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                                    | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDD         | 139.5                                 | 0.6                       | 100.1                                                        | 0.4                                                        |
| <sup>13</sup> C-1,2,3,7,8-P <sub>5</sub> CDD       | 139                                   | 4                         | 99.9                                                         | 2.4                                                        |
| <sup>13</sup> C-1,2,3,4,7,8-HCDD                   | 139.8                                 | 0.7                       | 100.3                                                        | 0.5                                                        |
| <sup>13</sup> C-1,2,3,6,7,8-HCDD                   | 139.3                                 | 2.4                       | 100.0                                                        | 1.7                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDD                 | 279                                   | 6                         | 200                                                          | 4                                                          |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDD | 278.7                                 | 1.6                       | 200.0                                                        | 1.1                                                        |
| <sup>13</sup> C-2,3,7,8-T <sub>4</sub> CDF         | 139.5                                 | 0.9                       | 100.1                                                        | 0.6                                                        |
| <sup>13</sup> C-2,3,4,7,8-P <sub>5</sub> CDF       | 139.2                                 | 0.6                       | 99.9                                                         | 0.4                                                        |
| <sup>13</sup> C-1,2,3,4,7,8-HCDF                   | 138.9                                 | 0.6                       | 99.7                                                         | 0.5                                                        |
| <sup>13</sup> C-1,2,3,6,7,8-HCDF                   | 139.4                                 | 1.1                       | 100.0                                                        | 0.8                                                        |
| <sup>13</sup> C-2,3,4,6,7,8-HCDF                   | 139.4                                 | 0.8                       | 100.0                                                        | 0.6                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8-HCDF                 | 278.7                                 | 2.0                       | 200.0                                                        | 1.4                                                        |
| <sup>13</sup> C-1,2,3,4,6,7,8,9-O <sub>8</sub> CDF | 278.7                                 | 2.5                       | 200.0                                                        | 1.8                                                        |

#### Cat. No. BCR614S8

| Congener                                   | Certified mass fraction <sup>1)</sup> | Uncertainty <sup>2)</sup> | Mass fraction expressed in concentration units <sup>3)</sup> | Uncertainty expressed in concentration units <sup>3)</sup> |
|--------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|
|                                            | (µg/kg)                               |                           | (µg/L)                                                       |                                                            |
| <sup>13</sup> C-1,2,3,7,8,9-HCDD           | 558                                   | 4                         | 400.5                                                        | 2.7                                                        |
| <sup>13</sup> C-1,2,3,4-T <sub>4</sub> CDD | 557.4                                 | 2.7                       | 400.0                                                        | 2.0                                                        |

- 1) The certified mass fraction has been calculated from the purity of the individual PCDD/F compounds as assessed in a comprehensive study and the gravimetric preparation of the solution.
- 2) Uncertainties have been calculated by combining contributions from the purity study and the gravimetric preparation; details are given in the certification report.
- 3) Non-certified values.

Availability: BCR614 Solutions S1-S7 contain about 1 mL solution and BCR614 Solution S8 about 0.5 mL. The solutions are available individually or as set. A set consists of 11 ampoules, one of S2, S4-S8 and two of S1 and S3. In addition, the set contains an additional solution S9, which is not certified. This solution is intended as complementary tool for QA/QC purposes.

#### Cat. No. ERMAC213

| Substance             | PAHs in Acetonitrile / Toluene (µg/g) |        |
|-----------------------|---------------------------------------|--------|
| Benz[a]anthracene     | 3.09                                  | ± 0.04 |
| Chrysene              | 3.06                                  | ± 0.05 |
| 5-methylchrysene      | 3.08                                  | ± 0.07 |
| Benzo[b]fluoranthene  | 3.05                                  | ± 0.05 |
| Benzo[k]fluoranthene  | 3.06                                  | ± 0.08 |
| Benzo[j]fluoranthene  | 3.05                                  | ± 0.10 |
| Dibenz[a,h]anthracene | 2.76                                  | ± 0.05 |

| Substance             | PAHs in Acetonitrile / Toluene (µg/g) |         |
|-----------------------|---------------------------------------|---------|
| Benzo[ghi]perylene    | 3.07                                  | ± 0.05  |
| Dibenzo[a,i]pyrene    | 2.85                                  | ± 0.10  |
| Dibenzo[a,e]pyrene    | 2.97                                  | ± 0.10  |
| Benzo[c]fluorene      | (2.13                                 | ± 0.11) |
| Cyclopental[cd]pyrene | (2.96                                 | ± 0.12) |
| Dibenzo[a,i]pyrene    | (2.37                                 | ± 0.15) |

Values in brackets are not certified.

14 Availability: ERMAC213 consists of 2 mL toluene containing 15 PAHs in an ampoule.

## 1.2 MATRIX MATERIALS

### 1.2.1 CERTIFIED FOR THE TOTAL ELEMENT CONTENT

| Substance                        | Cat. No. BCR142R<br>Light sandy soil (mg/kg) | Cat. No. ERMCC141<br>Loam soil (mg/kg) | Cat. No. BCR143R<br>Sewage sludge amended soil (mg/kg) |
|----------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------|
| As                               |                                              | 9.9 ± 1.5                              |                                                        |
| Cd                               | 0.34 ± 0.04                                  | 0.35 ± 0.05                            | 71.8 ± 1.2                                             |
| Co                               | 12.1 ± 0.7                                   | 8.5 ± 0.5                              | 12.3 ± 0.3                                             |
| Cr                               |                                              | 86 ± 8                                 |                                                        |
| Cu                               | 69.7 ± 1.3                                   | 14.4 ± 1.4                             | 130.6 ± 1.5                                            |
| Hg                               | 0.067 ± 0.011                                | 0.083 ± 0.017                          | 1.10 ± 0.07                                            |
| Mn                               | 970 ± 16                                     | 464 ± 18                               | 904 ± 13                                               |
| Ni                               | 64.5 ± 2.5                                   | 26.4 ± 2.4                             | 299 ± 5                                                |
| Pb                               | 40.2 ± 1.9                                   | 41 ± 4                                 | 179.7 ± 2.1                                            |
| Zn                               | (101 ± 6)                                    | 57 ± 4                                 | 1055 ± 14                                              |
| Aqua regia soluble <sup>1)</sup> |                                              |                                        |                                                        |
| As                               |                                              | 7.5 ± 1.4                              |                                                        |
| Cd                               | 0.249 ± 0.010                                | 0.25 ± 0.04                            | 72.0 ± 1.8                                             |
| Co                               | (10.2 ± 0.6)                                 | 7.9 ± 0.9                              | (11.8 ± 1.0)                                           |
| Cr                               |                                              | 31 ± 4                                 | 426 ± 12                                               |
| Cu                               | (69.8 ± 1.0)                                 | 12.4 ± 0.9                             | (128 ± 7)                                              |
| Hg                               |                                              | 0.080 ± 0.008                          | (1.10 ± 0.06)                                          |
| Mn                               | (800 ± 50)                                   | 387 ± 17                               | 858 ± 11                                               |
| Ni                               | 61.1 ± 1.5                                   | 21.9 ± 1.6                             | 296 ± 4                                                |
| Pb                               | 25.7 ± 1.6                                   | 32.2 ± 1.4                             | 174 ± 5                                                |
| Zn                               | 93.3 ± 2.7                                   | 50 ± 4                                 | 1063 ± 16                                              |

Values in brackets are not certified.

Availability: Glass bottles containing about 50 g of powdered material; ERMCC141 contains minimum 24 g.

<sup>1)</sup> Details of the analytical procedure to obtain the aqua regia soluble content of the elements are given in the certification report.

| Substance | Cat. No. BCR667<br>Estuarine sediment (mg/kg) | Cat. No. ERMCC690<br>Calcareous soil (mg/kg) |
|-----------|-----------------------------------------------|----------------------------------------------|
| Br        | (99.7 ± 2.5)                                  |                                              |
| Cd        | (0.67 ± 0.11)                                 |                                              |
| Ce        | 56.7 ± 2.5                                    | 49.1 ± 2.5                                   |
| Co        | (23.0 ± 1.3)                                  |                                              |
| Cr        | (178 ± 16)                                    |                                              |
| Cs        | (7.8 ± 0.7)                                   |                                              |
| Cu        | (60 ± 9)                                      |                                              |
| Dy        | 4.01 ± 0.14                                   | 2.90 ± 0.28                                  |
| Er        | 2.35 ± 0.15                                   |                                              |
| Eu        | 1.00 ± 0.05                                   |                                              |
| Fe        | (44800 ± 1)                                   |                                              |
| Gd        | 4.41 ± 0.12                                   | 3.2 ± 0.4                                    |
| Ho        | 0.80 ± 0.06                                   |                                              |
| La        | 27.8 ± 1.0                                    | 24.4 ± 1.7                                   |
| Lu        | 0.325 ± 0.020                                 |                                              |
| Mn        | (920 ± 40)                                    |                                              |

| Substance | Cat. No. BCR667<br>Estuarine sediment (mg/kg) | Cat. No. ERMCC690<br>Calcareous soil (mg/kg) |
|-----------|-----------------------------------------------|----------------------------------------------|
| Nd        | 25.0 ± 1.4                                    | 19.1 ± 2.2                                   |
| Ni        | (128 ± 9)                                     |                                              |
| Pb        | (31.9 ± 1.1)                                  |                                              |
| Pr        | 6.1 ± 0.5                                     |                                              |
| Sb        | (0.96 ± 0.05)                                 |                                              |
| Sc        | 13.7 ± 0.7                                    | 7.9 ± 0.9                                    |
| Se        | (1.59 ± 0.08)                                 |                                              |
| Sm        | 4.66 ± 0.20                                   | 3.5 ± 0.4                                    |
| Ta        | (0.876 ± 0.017)                               |                                              |
| Tb        | 0.682 ± 0.017                                 | 0.50 ± 0.07                                  |
| Th        | 10.0 ± 0.5                                    | 7.6 ± 0.8                                    |
| Tm        | 0.326 ± 0.025                                 | 0.232 ± 0.026                                |
| U         | 2.26 ± 0.15                                   | 1.90 ± 0.23                                  |
| Yb        | 2.20 ± 0.09                                   | 1.57 ± 0.19                                  |
| Zn        | (175 ± 13)                                    |                                              |

Values in brackets are not certified.

Availability: BCR667: Glass bottles containing about 40 g of powdered material.

ERMCC690: Glass bottles containing about 70 g of powdered material.

The report gives additional indicative values for As, Au, Co, Cr, Cs, Cu, Er, Eu, Fe, Hf, Ho, Lu, Ni, Pb, Pr, Sb, Ta, W, Y and Zn.

| Substance | Cat. No. BCR320R<br>Channel sediment (mg/kg) |   |      |
|-----------|----------------------------------------------|---|------|
| As        | 21.7                                         | ± | 2.0  |
| Cd        | 2.64                                         | ± | 0.18 |
| Co        | 9.7                                          | ± | 0.6  |
| Cr        | 59                                           | ± | 4    |
| Cu        | 46.3                                         | ± | 2.9  |
| Fe        | 25700                                        | ± | 1300 |
| Hg        | 0.85                                         | ± | 0.09 |
| Mn        | 910                                          | ± | 50   |
| Ni        | 27.1                                         | ± | 2.2  |

Values in brackets are not certified.

| Substance | Cat. No. BCR320R<br>Channel sediment (mg/kg) |   |       |
|-----------|----------------------------------------------|---|-------|
| Pb        | 85                                           | ± | 5     |
| Sc        | 5.2                                          | ± | 0.4   |
| Se        | (0.96                                        | ± | 0.18) |
| Sn        | (9.4                                         | ± | 1.7)  |
| Th        | 5.3                                          | ± | 0.4   |
| Tl        | 0.65                                         | ± | 0.08  |
| U         | 1.56                                         | ± | 0.20  |
| V         | 46.5                                         | ± | 2.8   |
| Zn        | 318                                          | ± | 20    |

| Substance                        | Cat. No. BCR145R<br>Sewage sludge (mixed origin) (mg/kg) |   |       | Cat. No. BCR146R<br>Sewage sludge (industrial origin) (mg/kg) |   |      | Cat. No. BCR597<br>Sewage sludge (mg/kg) |   |   |
|----------------------------------|----------------------------------------------------------|---|-------|---------------------------------------------------------------|---|------|------------------------------------------|---|---|
| Cd                               | 3.50                                                     | ± | 0.15  | 18.8                                                          | ± | 0.5  |                                          |   |   |
| Co                               | 5.6                                                      | ± | 0.4   | 7.39                                                          | ± | 27   |                                          |   |   |
| Cr                               |                                                          |   |       | 196                                                           | ± | 7    | 203                                      | ± | 6 |
| Cu                               | 696                                                      | ± | 12    | 838                                                           | ± | 16   |                                          |   |   |
| Hg                               | 2.01                                                     | ± | 0.22  | 8.6                                                           | ± | 0.4  |                                          |   |   |
| Mn                               | 156                                                      | ± | 4     | 323                                                           | ± | 7    |                                          |   |   |
| Ni                               | 247                                                      | ± | 7     | 70                                                            | ± | 5    |                                          |   |   |
| Pb                               | 286                                                      | ± | 5     | 609                                                           | ± | 14   |                                          |   |   |
| Zn                               | 2122                                                     | ± | 23    | 3060                                                          | ± | 60   |                                          |   |   |
| Aqua regia soluble <sup>1)</sup> |                                                          |   |       |                                                               |   |      |                                          |   |   |
| Cd                               | (3.43                                                    | ± | 0.17) | 18.4                                                          | ± | 0.4  |                                          |   |   |
| Co                               | (5.3                                                     | ± | 0.7)  | 6.5                                                           | ± | 0.4  |                                          |   |   |
| Cr                               | 307                                                      | ± | 13    | 174                                                           | ± | 7    |                                          |   |   |
| Cu                               | 707                                                      | ± | 9     | 831                                                           | ± | 16   |                                          |   |   |
| Hg                               | (1.99                                                    | ± | 0.08) | 8.39                                                          | ± | 0.25 |                                          |   |   |
| Mn                               | (145                                                     | ± | 7)    | 298                                                           | ± | 9    |                                          |   |   |
| Ni                               | 251                                                      | ± | 6     | 65.0                                                          | ± | 3.0  |                                          |   |   |
| Pb                               | 282                                                      | ± | 9     | 583                                                           | ± | 17   |                                          |   |   |
| Zn                               | 2140                                                     | ± | 50    | 3040                                                          | ± | 60   |                                          |   |   |

Values in brackets are not certified.

Availability: Glass bottles containing about 50 g of powdered material for BCR146R, 40 g for BCR145R and BCR597.

<sup>1)</sup> Details of the analytical procedure to obtain the aqua regia soluble content of the elements are given in the certification report.

| Substance                       | Cat. No. ERMCC580 Estuarine sediment (mg/kg) |   |       |
|---------------------------------|----------------------------------------------|---|-------|
| Total Hg                        | 132                                          | ± | 3     |
| CH <sub>3</sub> Hg <sup>+</sup> | 0.075                                        | ± | 0.004 |

Availability: Glass bottles containing about 40 g powder.

| Substance | Cat. No. BCR038<br>Fly ash from pulverised coal (mg/kg) |   |                   |
|-----------|---------------------------------------------------------|---|-------------------|
| As        | 48.0                                                    | ± | 2.3               |
| Cd        | 4.6                                                     | ± | 0.3               |
| Co        | 53.8                                                    | ± | 1.9               |
| Cr        | 192                                                     | ± | 10                |
| Cu        | 176                                                     | ± | 9                 |
| Fe        | $33.8 \times 10^3$                                      | ± | $0.7 \times 10^3$ |

Availability: BCR038 in ampoules containing about 5 g.

| Substance | Cat. No. BCR176R<br>Fly ash (mg/kg) |   |       |
|-----------|-------------------------------------|---|-------|
| As        | 54                                  | ± | 5     |
| Cd        | 226                                 | ± | 19    |
| Co        | 26.7                                | ± | 1.6   |
| Cr        | 810                                 | ± | 70    |
| Cu        | 1050                                | ± | 70    |
| Fe        | 13100                               | ± | 500   |
| Hg        | (1.60                               | ± | 0.23) |
| Mn        | (730                                | ± | 50)   |

Values in brackets are not certified.

The report gives additional indicative values for Ag, Au, Ba, Br, Ce, Cs, Eu, Hf, La, Na, Rb, Sc, Ta, Th and W.

Availability: Amber glass bottles containing about 40 g of powdered material.

| Substance | Cat. No. BCR723<br>Trace elements in road dust (µg/kg) |   |     |
|-----------|--------------------------------------------------------|---|-----|
| Pd        | 6.1                                                    | ± | 1.9 |
| Pt        | 81.3                                                   | ± | 2.5 |
| Rh        | 12.8                                                   | ± | 1.3 |

| Substance | Cat. No. BCR038<br>Fly ash from pulverised coal (mg/kg) |   |                    |
|-----------|---------------------------------------------------------|---|--------------------|
| Hg        | 2.10                                                    | ± | 0.15               |
| Mn        | 479                                                     | ± | 16                 |
| Na        | $3.74 \times 10^3$                                      | ± | $0.15 \times 10^3$ |
| Pb        | 262                                                     | ± | 11                 |
| Zn        | 581                                                     | ± | 29                 |

Availability: BCR038 in ampoules containing about 5 g.

| Substance | Cat. No. BCR176R<br>Fly ash (mg/kg) |   |      |
|-----------|-------------------------------------|---|------|
| Ni        | 117                                 | ± | 6    |
| Pb        | 5000                                | ± | 500  |
| Sb        | 850                                 | ± | 50   |
| Se        | 18.3                                | ± | 1.9  |
| Tl        | 1.32                                | ± | 0.21 |
| V         | (35                                 | ± | 6)   |
| Zn        | 16800                               | ± | 400  |

Values in brackets are not certified.

The report gives additional indicative values for Ag, Au, Ba, Br, Ce, Cs, Eu, Hf, La, Na, Rb, Sc, Ta, Th and W.

Availability: Amber glass bottles containing about 40 g of powdered material.

| Substance | Cat. No. BCR723<br>Trace elements in road dust (µg/kg) |   |     |
|-----------|--------------------------------------------------------|---|-----|
| Pd        | 6.1                                                    | ± | 1.9 |
| Pt        | 81.3                                                   | ± | 2.5 |
| Rh        | 12.8                                                   | ± | 1.3 |

Availability: Brown glass bottles with screw cap containing approximately 25 g of powder.

| Substance | Cat. No. ERMCZ120<br>Elements in fine dust (PM <sub>10</sub> -like) (mg/kg) |   |      |
|-----------|-----------------------------------------------------------------------------|---|------|
| As        | 7.1                                                                         | ± | 0.7  |
| Cd        | 0.90                                                                        | ± | 0.22 |

| Substance | Cat. No. ERMCZ120<br>Elements in fine dust (PM <sub>10</sub> -like) (mg/kg) |   |    |
|-----------|-----------------------------------------------------------------------------|---|----|
| Pb        | 113                                                                         | ± | 17 |
| Ni        | 58                                                                          | ± | 7  |

Availability: Vial containing approximately 0.5 g of fine dust.

| Substance | Cat. No. BCR596 <i>Trapa natans</i> (Aquatic plant) (mg/kg) |   |     |
|-----------|-------------------------------------------------------------|---|-----|
| Al        |                                                             |   |     |
| Cd        |                                                             |   |     |
| Cr        | 36.3                                                        | ± | 1.7 |
| Cu        |                                                             |   |     |

Availability: CRMs are provided in units of 25 g.

| Substance | Cat. No. BCR129<br>Hay powder (g/kg)            | Cat. No. BCR402<br>White clover (mg/kg) |
|-----------|-------------------------------------------------|-----------------------------------------|
| As        |                                                 | 0.093 ± 0.010                           |
| Ca        | 6.40 ± 0.10                                     |                                         |
| Co        |                                                 | 0.178 ± 0.008                           |
| I         | $0.167 \times 10^{-3}$ ± $0.024 \times 10^{-3}$ |                                         |
| K         | 33.8 ± 0.8                                      |                                         |
| Mg        | 1.45 ± 0.04                                     |                                         |
| Mo        |                                                 | 6.93 ± 0.19                             |
| N         | 37.2 ± 0.5                                      |                                         |

| Substance  | Cat. No. BCR129<br>Hay powder (g/kg)         | Cat. No. BCR402<br>White clover (mg/kg) |
|------------|----------------------------------------------|-----------------------------------------|
| P          | 2.36 ± 0.07                                  |                                         |
| S          | 3.16 ± 0.04                                  |                                         |
| Se         |                                              | 6.70 ± 0.25                             |
| Zn         | $32.1 \times 10^{-3}$ ± $1.7 \times 10^{-3}$ |                                         |
| Kjeldahl-N | 34.2 ± 0.4                                   |                                         |

Availability: CRMs are provided in powder form in bottles containing approximately for BCR129 30 g, BCR402 25 g.

Note: BCR402 was produced from white clover grown on a ground specially rich in selenium. This explains the high content of this element.

| Substance | Cat. No. ERMCD281<br>Rye grass (mg/kg) |
|-----------|----------------------------------------|
| As        | 0.042 ± 0.010                          |
| B         | 5.5 ± 0.5                              |
| Ca        | (6.3 g/kg)                             |
| Cd        | 0.120 ± 0.007                          |
| Cr        | 24.8 ± 1.3                             |
| Cu        | 10.2 ± 0.5                             |
| Fe        | (0.18 g/kg)                            |
| Hg        | 0.0164 ± 0.0022                        |
| K         | (34 g/kg)                              |
| Mg        | (1.6 g/kg)                             |
| Mn        | 82 ± 4                                 |

Values in brackets are not certified.

Availability: Amber glass vial containing approximately 10 g.

| Substance | Cat. No. ERMCD281<br>Rye grass (mg/kg) |
|-----------|----------------------------------------|
| Mo        | 2.22 ± 0.12                            |
| Na        | (4.0 g/kg)                             |
| Ni        | 15.2 ± 0.6                             |
| P         | (2.8 g/kg)                             |
| Pb        | 1.67 ± 0.11                            |
| S         | (3.4 g/kg)                             |
| Sb        | 0.042 ± 0.007                          |
| Se        | 0.023 ± 0.004                          |
| Si        | (1.3 g/kg)                             |
| Sn        | 0.062 ± 0.011                          |
| Zn        | 30.5 ± 1.1                             |

Values in brackets are not certified.

Availability: CRM is provided in powder form in bottles containing approximately 5 g.

| Substance | Cat. No. BCR414<br>Plankton (mg/kg) |
|-----------|-------------------------------------|
| As        | 6.82 ± 0.28                         |
| Cd        | 0.383 ± 0.014                       |
| Co        | (1.43 ± 0.06)                       |
| Cr        | 23.8 ± 1.2                          |
| Cu        | 29.5 ± 1.3                          |
| Fe        | (1.85 ± 0.19 g/kg)                  |
| Hg        | 0.276 ± 0.018                       |
| K         | (7.55 ± 0.17)                       |
| Mn        | 299 ± 13                            |

| Substance | Cat. No. BCR414<br>Plankton (mg/kg) |
|-----------|-------------------------------------|
| Mo        | (1.35 ± 0.20)                       |
| Ni        | 18.8 ± 0.8                          |
| Pb        | 3.97 ± 0.19                         |
| Sc        | (0.54 ± 0.02)                       |
| Se        | 1.75 ± 0.10                         |
| Sr        | (261 ± 25)                          |
| V         | 8.10 ± 0.18                         |
| Zn        | 111.6 ± 2.5                         |

Values in brackets are not certified.

Availability: CRM is provided in powder form in bottles containing approximately 5 g.

| Substance | Cat. No. BCR482 Lichen (mg/kg) |
|-----------|--------------------------------|
| Al        | 1103 ± 24                      |
| As        | 0.85 ± 0.07                    |
| Cd        | 0.56 ± 0.02                    |
| Cr        | 4.12 ± 0.15                    |
| Cu        | 7.03 ± 0.19                    |

| Substance | Cat. No. BCR482 Lichen (mg/kg) |
|-----------|--------------------------------|
| Hg        | 0.48 ± 0.02                    |
| Ni        | 2.47 ± 0.07                    |
| Pb        | 40.9 ± 1.4                     |
| Se        |                                |
| Zn        | 100.6 ± 2.2                    |

| Substance | Cat. No. ERMCD200 Bladderwrack ( <i>Fucus vesiculosus</i> ) (mg/kg) |        |
|-----------|---------------------------------------------------------------------|--------|
| Al        |                                                                     |        |
| As        | 55                                                                  | ± 4    |
| Cd        | 0.95                                                                | ± 0.06 |
| Cr        |                                                                     |        |
| Cu        | 1.71                                                                | ± 0.18 |

Availability: BCR482 is provided in powder form in bottles containing approximately 15 g.  
ERMCD200 is provided in powder form in bottles containing approximately 5 g.

| Substance | Cat. No. BCR670<br>Lemna minor (Aquatic plant) (duck weed) (µg/kg) |        |
|-----------|--------------------------------------------------------------------|--------|
| As        | (1980                                                              | ± 190) |
| Cd        | (75.5                                                              | ± 2.5) |
| Ce        | 990                                                                | ± 40   |
| Cr        | (2050                                                              | ± 100) |
| Cs        | (77                                                                | ± 10)  |
| Cu        | (1820                                                              | ± 300) |
| Dy        | 79                                                                 | ± 7    |
| Er        | 44.0                                                               | ± 2.8  |
| Eu        | 23.2                                                               | ± 1.5  |
| Gd        | 98                                                                 | ± 8    |
| Ho        | 15.8                                                               | ± 1.8  |
| La        | 487                                                                | ± 20   |
| Lu        | 6.3                                                                | ± 0.5  |

Values in brackets are not certified.  
Availability: Glass bottles containing about 10 g of powdered material.

| Substance | Cat. No. ERMCE278k Mussel tissue (mg/kg) |          |
|-----------|------------------------------------------|----------|
| As        | 6.7                                      | ± 0.4    |
| Ag        | (0.044                                   | ± 0.016) |
| Cd        | 0.336                                    | ± 0.025  |
| Cr        | 0.73                                     | ± 0.22   |
| Cu        | 5.98                                     | ± 0.27   |
| Fe        | 161                                      | ± 8      |
| Hg        | 0.071                                    | ± 0.007  |
| I         | 1.4                                      | ± 0.4    |

Values in brackets are not certified.  
Availability: CRMs are provided in powder form in bottles containing approximately 8 g.

| Substance | Cat. No. BCR668 Mussel tissue (µg/kg) |        |
|-----------|---------------------------------------|--------|
| As        | (7100                                 | ± 500) |
| Cd        | (275                                  | ± 11)  |
| Ce        | 89                                    | ± 7    |
| Cr        | (370                                  | ± 60)  |
| Cs        | (13.8                                 | ± 1.5) |
| Dy        | 8.9                                   | ± 0.6  |
| Er        | 4.5                                   | ± 0.5  |

| Substance | Cat. No. ERMCD200 Bladderwrack ( <i>Fucus vesiculosus</i> ) (mg/kg) |          |
|-----------|---------------------------------------------------------------------|----------|
| Hg        | 0.0186                                                              | ± 0.0016 |
| Ni        |                                                                     |          |
| Pb        | 0.51                                                                | ± 0.06   |
| Se        | 0.088                                                               | ± 0.010  |
| Zn        | 25.3                                                                | ± 1.7    |

| Substance | Cat. No. BCR670<br>Lemna minor (Aquatic plant) (duck weed) (µg/kg) |         |
|-----------|--------------------------------------------------------------------|---------|
| Mo        | (560                                                               | ± 70)   |
| Nd        | 473                                                                | ± 15    |
| Pb        | (2060                                                              | ± 120)  |
| Pr        | 121                                                                | ± 6     |
| Sc        | 191                                                                | ± 11    |
| Sm        | 94                                                                 | ± 7     |
| Tb        | 14.0                                                               | ± 1.1   |
| Th        | 159                                                                | ± 18    |
| Tm        | 5.7                                                                | ± 0.7   |
| U         | 82                                                                 | ± 8     |
| Y         | 460                                                                | ± 60    |
| Yb        | 40                                                                 | ± 4     |
| Zn        | (24000                                                             | ± 2100) |

| Substance | Cat. No. ERMCE278k Mussel tissue (mg/kg) |        |
|-----------|------------------------------------------|--------|
| Mn        | 4.88                                     | ± 0.24 |
| Ni        | 0.69                                     | ± 0.15 |
| Pb        | 2.18                                     | ± 0.18 |
| Rb        | 2.46                                     | ± 0.16 |
| Se        | 1.62                                     | ± 0.12 |
| Sr        | 19.0                                     | ± 1.2  |
| Zn        | 71                                       | ± 4    |

| Substance | Cat. No. BCR668 Mussel tissue (µg/kg) |         |
|-----------|---------------------------------------|---------|
| Eu        | 2.79                                  | ± 0.16  |
| Gd        | 13.0                                  | ± 0.6   |
| Ho        | (1.8                                  | ± 0.6)  |
| La        | 80                                    | ± 6     |
| Lu        | 0.389                                 | ± 0.024 |
| Mo        | (1990                                 | ± 150)  |
| Nd        | 54                                    | ± 4     |

| Substance | Cat. No. BCR668 Mussel tissue (µg/kg) |        |
|-----------|---------------------------------------|--------|
| Pr        | 12.3                                  | ± 1.1  |
| Sc        | (8.5                                  | ± 1.8) |
| Sm        | 11.2                                  | ± 0.8  |
| Tb        | 1.62                                  | ± 0.12 |
| Th        | 10.7                                  | ± 1.2  |

Values in brackets are not certified.

Availability: Glass bottles containing about 10 g of powdered material.

| Substance | Cat. No. BCR463<br>Tuna fish (mg/kg) | Cat. No. ERMCE464<br>Tuna fish (mg/kg) |
|-----------|--------------------------------------|----------------------------------------|
| Total Hg  | 2.85 ± 0.16                          | 5.24 ± 0.10                            |

Availability: Glass bottles containing about 15 g.

| Substance | Cat. No. BCR505<br>Trace elements in<br>estuarine water (nmol/kg) | Cat. No. BCR579<br>Coastal sea-water<br>(ng/kg) |
|-----------|-------------------------------------------------------------------|-------------------------------------------------|
| Cd        | 0.80 ± 0.04                                                       |                                                 |
| Co        | (0.99 ± 0.26)                                                     |                                                 |
| Cu        | 29.4 ± 1.5                                                        |                                                 |
| Fe        | (19 ± 4)                                                          |                                                 |

Values in brackets are not certified.

Availability: BCR505 is provided in 1 L polyethylene bottles and BCR579 in 1 L glass bottles.

| Substance                  | Cat. No. ERMCA408<br>Simulated rainwater (low contents) (mg/L) |         |
|----------------------------|----------------------------------------------------------------|---------|
| <b>Mass concentration:</b> |                                                                |         |
| Ammonium                   | 0.910                                                          | ± 0.028 |
| Cl                         | 1.96                                                           | ± 0.07  |
| Fluoride                   | 0.194                                                          | ± 0.008 |
| Mg                         | 0.145                                                          | ± 0.022 |
| NO <sub>3</sub>            | 2.01                                                           | ± 0.09  |

Availability: ERMCA408 is provided in units of about 95 mL in flame-sealed ampoules.

| Substance                      | Cat. No. BCR479 Freshwater (low contents) | Cat. No. BCR480 Freshwater (high contents) |
|--------------------------------|-------------------------------------------|--------------------------------------------|
| Nitrate                        |                                           | 885 ± 13 µmol/kg                           |
| As amount of substance content | 214 ± 4 µmol/kg                           |                                            |
| As mass fraction               | 13.3 ± 0.3mg/kg                           |                                            |

Availability: Units of about 100 mL in white glass ampoules.

| Substance | Cat. No. BCR611<br>Bromide in ground water based on<br>IC-measurements (low contents) (µg/kg) | Cat. No. BCR612<br>Bromide in ground water based on<br>IC-measurements (high contents) (µg/kg) |
|-----------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Br        | 93 ± 4                                                                                        | 252 ± 10                                                                                       |

Availability: Set of four brown glass ampoules of 25 mL.

| Substance            | Cat. No. BCR609<br>Ground water (low contents) (µg/kg) | Cat. No. BCR610<br>Ground water (high contents) (µg/kg) | Cat. No. ERMCA616<br>Ground water (high carbonate content) (mg/L) |
|----------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|
|                      | Mass concentration:                                    |                                                         |                                                                   |
| Al                   | 47.7 ± 1.6                                             | 159 ± 4                                                 |                                                                   |
| As                   | 1.20 ± 0.12                                            | 10.8 ± 0.4                                              |                                                                   |
| Cd                   | 0.164 ± 0.012                                          | 2.94 ± 0.08                                             |                                                                   |
| Cu                   | 2.48 ± 0.09                                            | 45.7 ± 1.5                                              |                                                                   |
| Pb                   | 1.63 ± 0.04                                            | 7.78 ± 0.13                                             |                                                                   |
| Ca                   |                                                        |                                                         | 42.6 ± 1.4                                                        |
| Cl                   |                                                        |                                                         | 44.6 ± 10.9                                                       |
| K                    |                                                        |                                                         | 5.79 ± 0.15                                                       |
| Mg                   |                                                        |                                                         | 10.1 ± 0.3                                                        |
| Mn                   |                                                        |                                                         |                                                                   |
| Na                   |                                                        |                                                         | 27.9 ± 0.8                                                        |
| NO <sub>3</sub>      |                                                        |                                                         |                                                                   |
| Ortho-phosphate      |                                                        |                                                         | 2.24 ± 0.10                                                       |
| PO <sub>4</sub>      |                                                        |                                                         |                                                                   |
| SO <sub>4</sub>      |                                                        |                                                         |                                                                   |
|                      | Electrochemical property:                              |                                                         |                                                                   |
| Conductivity (20 °C) |                                                        |                                                         | 426 ± 5 µS/cm                                                     |
| pH (20 °C)           |                                                        |                                                         | 7.12 ± 0.18                                                       |

Availability: BCR609 and BCR610 are provided in 500 mL PE bottles; ERMCA616 consists of about 95 mL natural groundwater in a flame-sealed ampoule.

| Substance | Cat. No. ERMCA615 Groundwater |
|-----------|-------------------------------|
| As        | 9.9 ± 0.7                     |
| Cd        | 0.106 ± 0.011                 |
| Fe        | 5.11 ± 0.26                   |
| Hg        | 0.037 ± 0.004                 |

| Substance | Cat. No. ERMCA615 Groundwater |
|-----------|-------------------------------|
| Mn        | 107 ± 5                       |
| Ni        | 25.3 ± 1.1                    |
| Pb        | 7.1 ± 0.6                     |

Availability: One unit consists of about 95 mL natural groundwater in a flame-sealed ampoule.

| Substance | Cat. No. ERMCA713 Wastewater µg/L |
|-----------|-----------------------------------|
| As        | 10.8 ± 0.3                        |
| Cd        | 5.09 ± 0.20                       |
| Cr        | 20.9 ± 1.3                        |
| Cu        | 101 ± 7                           |
| Fe        | 445 ± 27                          |

| Substance | Cat. No. ERMCA713 Wastewater µg/L |
|-----------|-----------------------------------|
| Hg        | 1.84 ± 0.11                       |
| Mn        | 95 ± 4                            |
| Ni        | 50.3 ± 1.4                        |
| Pb        | 49.7 ± 1.7                        |
| Se        | 4.9 ± 1.1                         |

Availability: ampoule containing approximately 100 mL of wastewater effluent acidified with HNO<sub>3</sub> to about pH 2.

## 1.2.2 CERTIFIED FOR THE EXTRACTABLE ELEMENT CONTENT AND SPECIES

Values in brackets are not certified.

| Substance | Cat. No. BCR483<br>Sewage sludge amended soil (mg/kg) | Cat. No. BCR484<br>Sewage sludge amended<br>(terra rossa) soil (mg/kg) | Cat. No. BCR700<br>Organic-rich soil (mg/kg) |
|-----------|-------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|
| EDTA:Cd   | 24.3 ± 1.3                                            | 0.509 ± 0.030                                                          | 65.2 ± 3.5                                   |

| Substance                            | Cat. No. BCR483<br>Sewage sludge amended soil (mg/kg) | Cat. No. BCR484<br>Sewage sludge amended<br>(terra rossa) soil (mg/kg) | Cat. No. BCR700<br>Organic-rich soil (mg/kg) |
|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|
| Cr                                   | 28.6 ± 2.6                                            | 88 ± 4                                                                 | 10.1 ± 0.9                                   |
| Cu                                   | 215 ± 11                                              | 1.39 ± 0.11                                                            | 89.4 ± 2.8                                   |
| Ni                                   | 28.7 ± 1.7                                            | 47.9 ± 2.6                                                             | 53.2 ± 2.8                                   |
| Pb                                   | 229 ± 8                                               | 152 ± 7                                                                | 103 ± 5                                      |
| Zn                                   | 612 ± 20                                              | 0.48 ± 0.04                                                            | 510 ± 17                                     |
| Acetic acid: Cd                      | 18.3 ± 0.6                                            |                                                                        | 67.5 ± 2.8                                   |
| Cr                                   | 18.7 ± 1.0                                            |                                                                        | 19.0 ± 1.1                                   |
| Cu                                   | 33.5 ± 1.6                                            | 33.9 ± 1.4                                                             | 36.3 ± 1.6                                   |
| Ni                                   | 25.8 ± 1.0                                            | 1.69 ± 0.16                                                            | 99.0 ± 5.1                                   |
| Pb                                   | 2.10 ± 0.25                                           | 1.17 ± 0.16                                                            | 4.85 ± 0.38                                  |
| Zn                                   | 620 ± 24                                              | 193 ± 7                                                                | 719 ± 24                                     |
| Calcium chloride extractable content |                                                       |                                                                        |                                              |
| Cd                                   | (0.45 ± 0.05)                                         | (< 0.08)                                                               |                                              |
| Cr                                   | (0.35 ± 0.09)                                         | (< 0.09)                                                               |                                              |
| Cu                                   | (1.2 ± 0.4)                                           | (0.67 ± 0.29)                                                          |                                              |
| Ni                                   | (1.4 ± 0.2)                                           | (< 0.05)                                                               |                                              |
| Pb                                   | (< 0.06)                                              | (< 0.06)                                                               |                                              |
| Zn                                   | (8.3 ± 0.7)                                           | (0.31 ± 0.17)                                                          |                                              |
| Sodium nitrate extractable content   |                                                       |                                                                        |                                              |
| Cd                                   | (0.08 ± 0.03)                                         | (< 0.05)                                                               |                                              |
| Cr                                   | (0.30 ± 0.07)                                         | (< 0.03)                                                               |                                              |
| Cu                                   | (0.89 ± 0.22)                                         | (0.48 ± 0.15)                                                          |                                              |
| Ni                                   | (0.65 ± 0.07)                                         | (0.023 ± 0.005)                                                        |                                              |
| Pb                                   | (< 0.03)                                              | (< 0.06)                                                               |                                              |
| Zn                                   | (2.7 ± 0.8)                                           | (0.09 ± 0.04)                                                          |                                              |
| Ammonium nitrate extractable content |                                                       |                                                                        |                                              |
| Cd                                   | (0.26 ± 0.05)                                         | (0.003 ± 0.002)                                                        |                                              |
| Cr                                   | (0.27 ± 0.10)                                         | (< 0.06)                                                               |                                              |
| Cu                                   | (1.2 ± 0.3)                                           | (1.1 ± 0.4)                                                            |                                              |
| Ni                                   | (1.1 ± 0.3)                                           | (0.033 ± 0.017)                                                        |                                              |
| Pb                                   | (0.020 ± 0.013)                                       | (< 0.06)                                                               |                                              |
| Zn                                   | (6.5 ± 0.9)                                           | (0.17 ± 0.05)                                                          |                                              |

Availability: BCR483 and BCR484 are provided in glass bottles containing about 70 g of powder.

BCR700 is provided in glass bottles containing about 40 g of powder.

| Substance          | Cat. No. BCR684<br>River sediment (mg/kg) |
|--------------------|-------------------------------------------|
| NaOH-extractable P | 550 ± 21                                  |
| HCl-extractable P  | 536 ± 28                                  |
| Inorganic P        | 1113 ± 24                                 |

| Substance            | Cat. No. BCR684<br>River sediment (mg/kg) |
|----------------------|-------------------------------------------|
| Organic P            | 209 ± 9                                   |
| Conc. HCl-extract. P | 1373 ± 35                                 |

Availability: Glass bottles containing about 35 g of powdered material.

| Substance                                   | Cat. No. BCR701 Lake sediment (mg/kg) |   |      |
|---------------------------------------------|---------------------------------------|---|------|
| Extractable mass fraction based on dry mass |                                       |   |      |
| Step 1: Cd                                  | 7.3                                   | ± | 0.4  |
| Cr                                          | 2.26                                  | ± | 0.16 |
| Cu                                          | 49.3                                  | ± | 1.7  |
| Ni                                          | 15.4                                  | ± | 0.9  |
| Pb                                          | 3.18                                  | ± | 0.21 |
| Zn                                          | 205                                   | ± | 6    |
|                                             |                                       |   |      |
| Step 2: Cd                                  | 3.77                                  | ± | 0.28 |
| Cr                                          | 45.7                                  | ± | 2.0  |
| Cu                                          | 124                                   | ± | 3    |
| Ni                                          | 26.6                                  | ± | 1.3  |
| Pb                                          | 126                                   | ± | 3    |
| Zn                                          | 114                                   | ± | 5    |

Values in brackets are not certified.

Availability: Glass bottles containing about 20 g of powdered material.

| Substance                       | Cat. No. BCR701 Lake sediment (mg/kg) |   |       |
|---------------------------------|---------------------------------------|---|-------|
| Step 3: Cd                      | 0.27                                  | ± | 0.06  |
| Cr                              | 143                                   | ± | 7     |
| Cu                              | 55                                    | ± | 4     |
| Ni                              | 15.3                                  | ± | 0.9   |
| Pb                              | 9.3                                   | ± | 2.0   |
| Zn                              | 46                                    | ± | 4     |
| Mass fraction based on dry mass |                                       |   |       |
| Cd                              | (0.13                                 | ± | 0.08) |
| Cr                              | (62.5                                 | ± | 7.4)  |
| Cu                              | (38.5                                 | ± | 11.2) |
| Ni                              | (41.4                                 | ± | 4.0)  |
| Pb                              | (11.0                                 | ± | 5.2)  |
| Zn                              | (95                                   | ± | 13    |

| Substance            | Cat. No. BCR462 Coastal sediment (µg/kg) | Cat. No. BCR646 Freshwater sediment (µg/kg) |
|----------------------|------------------------------------------|---------------------------------------------|
| Tributyltin (TBT)    | 54 ± 15                                  | 480 ± 80                                    |
| Dibutyltin (DBT)     | 68 ± 12                                  | 770 ± 90                                    |
| Monobutyltin (MBT)   |                                          | 610 ± 120                                   |
| Triphenyltin (TPhT)  |                                          | 29 ± 11                                     |
| Diphenyltin (DPhT)   |                                          | 36 ± 8                                      |
| Monophenyltin (MPhT) |                                          | 69 ± 18                                     |

Availability: Glass bottle containing about 25 g of powder for BCR462 and 40 g of powder for BCR646.

| Substance                       | Cat. No. ERMCC580 Estuarine sediment (mg/kg) |
|---------------------------------|----------------------------------------------|
| Total Hg                        | 132 ± 3                                      |
| CH <sub>3</sub> Hg <sup>+</sup> | 0.075 ± 0.004                                |

Availability: Glass bottles containing about 40 g powder.

| Substance             | Cat. No. BCR605 Urban dust (µg/kg) |
|-----------------------|------------------------------------|
| Trimethyllead (TriML) | 7.9 ± 1.2                          |

Availability: Glass bottles containing about 15 g of powder.

| Substance          | Cat. No. BCR545 Welding dust loaded on a filter (g/kg) |
|--------------------|--------------------------------------------------------|
| Cr (VI)            | 40.2 ± 0.6                                             |
| total leachable Cr | 39.5 ± 1.3                                             |

Availability: Glass fibre filter loaded with welding dust containing about 100 µg Cr (VI).

| Substance          | Cat. No. ERMCE477 Mussel tissue (mg/kg) |   |      |
|--------------------|-----------------------------------------|---|------|
| Tributyltin (TBT)  | 2.20                                    | ± | 0.19 |
| Dibutyltin (DBT)   | 1.54                                    | ± | 0.12 |
| Monobutyltin (MBT) | 1.50                                    | ± | 0.28 |

Availability: Glass bottle containing about 14 g of powder.

| Substance                       | Cat. No. BCR463 Tuna fish (mg/kg) | Cat. No. ERMCE464 Tuna fish (mg/kg) |
|---------------------------------|-----------------------------------|-------------------------------------|
| Total Hg                        | 2.85 ± 0.16                       | 5.24 ± 0.10                         |
| CH <sub>3</sub> Hg <sup>+</sup> | 3.04 ± 0.16                       | 5.50 ± 0.17                         |

Availability: Glass bottles containing about 15 g powder.

| Substance                    | Cat. No. BCR627 Tuna fish tissue | Cat. No. ERMBC211 Rice |
|------------------------------|----------------------------------|------------------------|
| Total As                     | 4.8 ± 0.3 mg/kg                  | 260 ± 13 µg/kg         |
| Dimethylarsinic acid         | 2.0 ± 0.3 µmol/kg                | 119 ± 13 µg/kg         |
| Sum of arsenite and arsenate |                                  | 124 ± 11 µg/kg         |
| Arsenobetaine                | 52 ± 3 µmol/kg                   |                        |

Availability: BCR627: Glass bottles containing about 10 g powder  
ERMBC211: Vial containing about 10 g of powder

### 1.2.3 CERTIFIED FOR ORGANIC POLLUTANTS

| Substance            | Cat. No. ERMCZ100<br>Fine dust (PM <sub>10</sub> -like) (mg/kg) |
|----------------------|-----------------------------------------------------------------|
| Benz[a]anthracene    | 0.91 ± 0.07                                                     |
| Benzo[a]pyrene       | 0.72 ± 0.05                                                     |
| Benzo[b]fluoranthene | 1.42 ± 0.14                                                     |
| Benzo[j]fluoranthene | 0.75 ± 0.14                                                     |
| Benzo[k]fluoranthene | 0.67 ± 0.06                                                     |

| Substance                                                                  | Cat. No. ERMCZ100<br>Fine dust (PM <sub>10</sub> -like) (mg/kg) |
|----------------------------------------------------------------------------|-----------------------------------------------------------------|
| Dibenzo[a,h]anthracene                                                     | 0.18 ± 0.04                                                     |
| Indeno[1,2,3-c,d]pyrene                                                    | 1.07 ± 0.10                                                     |
| Sum of Benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[j]fluoranthene | 2.84 ± 0.21                                                     |

Availability: Vial containing about 0.5 g of fine dust.

| Substance            | Cat. No. BCR524<br>Contaminated industrial soil (mg/kg) |
|----------------------|---------------------------------------------------------|
| Pyrene               | 173 ± 11                                                |
| Benz[a]anthracene    | 22.5 ± 1.8                                              |
| Benzo[a]pyrene       | 8.6 ± 0.5                                               |
| Benzo[e]pyrene       | 10.6 ± 1.4                                              |
| Benzo[b]fluoranthene | 13.5 ± 1.6                                              |

| Substance                        | Cat. No. BCR524<br>Contaminated industrial soil (mg/kg) |
|----------------------------------|---------------------------------------------------------|
| Benzo[k]fluoranthene             | 6.2 ± 0.6                                               |
| Benzo[b]naphtho[2,1-d]-thiophene | 3.8 ± 0.6                                               |
| Indeno[1,2,3-cd]pyrene           | 5.1 ± 0.4                                               |
| Pentachlorophenol                | 0.034 ± 0.005                                           |

Availability: Glass bottle containing about 40 g of powder.

| Substance         | Cat. No. BCR535<br>Freshwater harbour sediment (mg/kg) |
|-------------------|--------------------------------------------------------|
| Pyrene            | 2.52 ± 0.18                                            |
| Benz[a]anthracene | 1.54 ± 0.10                                            |
| Benzo[a]pyrene    | 1.16 ± 0.10                                            |
| Benzo[e]pyrene    | 1.86 ± 0.13                                            |

| Substance              | Cat. No. BCR535<br>Freshwater harbour sediment (mg/kg) |
|------------------------|--------------------------------------------------------|
| Benzo[b]fluoranthene   | 2.29 ± 0.15                                            |
| Benzo[k]fluoranthene   | 1.09 ± 0.15                                            |
| Indeno[1,2,3-cd]pyrene | 1.56 ± 0.14                                            |

Availability: Glass bottle containing about 40 g of powder.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR481 Industrial soil (mg/kg) | Cat. No. BCR536 Freshwater harbour sediment (µg/kg) |
|---------------------------------------|-----------------------------------------|-----------------------------------------------------|
| 28                                    |                                         | 44 ± 5                                              |
| 52                                    |                                         | 38 ± 4                                              |
| 101                                   | 37 ± 3                                  | 44 ± 4                                              |
| 105                                   |                                         | 3.5 ± 0.6                                           |
| 118                                   | 9.4 ± 0.7                               | 28 ± 3                                              |
| 128                                   | 9.1 ± 0.8                               | 5.4 ± 1.2                                           |
| 138                                   |                                         | 27 ± 4                                              |
| 149                                   | 97 ± 7                                  | 49 ± 4                                              |
| 153                                   | 137 ± 7                                 | 50 ± 4                                              |
| 156                                   | 7.0 ± 0.5                               | 3.0 ± 0.4                                           |
| 163                                   |                                         | 17 ± 3                                              |
| 170                                   | 52 ± 4                                  | 13.4 ± 1.4                                          |
| 180                                   | 124 ± 6                                 | 22 ± 2                                              |

Availability: BCR481 is provided in brown glass bottles with a polyethylene insert containing approximately 25 g of soil. BCR536 is provided in a glass bottle containing about 40 g of powder.

| Substance              | Cat. No. BCR529 Industrial (sandy) soil |
|------------------------|-----------------------------------------|
| 3,4-dichlorophenol     | 0.23 ± 0.04 mg/kg                       |
| 2,4,5-trichlorophenol  | 1.51 ± 0.10 mg/kg                       |
| Pentachlorophenol      | 0.23 ± 0.04 mg/kg                       |
| 2,3,7,8-TCDD(D48)      | 4.5 ± 0.6 µg/kg                         |
| 1,2,3,7,8-PeCDD(D54)   | 0.44 ± 0.05 µg/kg                       |
| 1,2,3,4,7,8-HxCDD(D66) | 1.22 ± 0.21 µg/kg                       |
| 1,2,3,6,7,8-HxCDD(D67) | 5.4 ± 0.9 µg/kg                         |
| 1,2,3,7,8,9-HxCDD(D70) | 3.0 ± 0.4 µg/kg                         |

| Substance               | Cat. No. BCR529 Industrial (sandy) soil |
|-------------------------|-----------------------------------------|
| 2,3,7,8-TCDF(F83)       | 0.078 ± 0.013 µg/kg                     |
| 1,2,3,7,8-PeCDF(F94)    | 0.145 ± 0.028 µg/kg                     |
| 2,3,4,7,8-PeCDF(F114)   | 0.36 ± 0.07 µg/kg                       |
| 1,2,3,4,7,8-HxCDF(F118) | 3.4 ± 0.5 µg/kg                         |
| 1,2,3,6,7,8-HxCDF(F121) | 1.09 ± 0.15 µg/kg                       |
| 1,2,3,7,8,9-HxCDF(F124) | 0.022 ± 0.010 µg/kg                     |
| 2,3,4,6,7,8-HxCDF(F130) | 0.37 ± 0.05 µg/kg                       |

Availability: Amber glass bottles containing about 50 g of dried soil.

| Substance                             | Cat. No. BCR677 Sewage sludge (ng/kg)          |
|---------------------------------------|------------------------------------------------|
| 2,3,7,8-T <sub>4</sub> CDD(D48)       | 1.51 ± 0.16                                    |
| 1,2,3,7,8-P <sub>5</sub> CDD(D54)     | 4.1 ± 0.9                                      |
| 1,2,3,6,7,8-H <sub>6</sub> CDD(D67)   | 235 ± 16                                       |
| 1,2,3,7,8,9-H <sub>6</sub> CDD(D70)   | 79 ± 7                                         |
| 1,2,3,4,6,7,8-H <sub>7</sub> CDD(D73) | 3.5 × 10 <sup>3</sup> ± 0.4 × 10 <sup>3</sup>  |
| O <sub>8</sub> CDD(D75)               | 12.7 × 10 <sup>3</sup> ± 0.8 × 10 <sup>3</sup> |
| 2,3,7,8-T <sub>4</sub> CDF(F83)       | 45 ± 4                                         |
| 1,2,3,7,8-P <sub>5</sub> CDF(F94)     | 24.8 ± 1.6                                     |

| Substance                              | Cat. No. BCR677 Sewage sludge (ng/kg) |
|----------------------------------------|---------------------------------------|
| 2,3,4,7,8-P <sub>5</sub> CDF(F114)     | 16.9 ± 1.5                            |
| 1,2,3,4,7,8-H <sub>6</sub> CDF(F118)   | 14.5 ± 1.6                            |
| 1,2,3,6,7,8-H <sub>6</sub> CDF(F121)   | 6.1 ± 0.8                             |
| 1,2,3,7,8,9-H <sub>6</sub> CDF(F124)   | 0.84 ± 0.29                           |
| 2,3,4,6,7,8-H <sub>6</sub> CDF(F130)   | 5.6 ± 0.6                             |
| 1,2,3,4,6,7,8-H <sub>7</sub> CDF(F131) | 62 ± 3                                |
| 1,2,3,4,7,8,9-H <sub>7</sub> CDF(F134) | 6.3 ± 0.8                             |
| O <sub>8</sub> CDF(F135)               | 177 ± 7                               |

Availability: BCR677 consists of approximately 40 g of dried sewage sludge in amber glass bottles.

| Substance                           | Cat. No. BCR490 Fly ash (µg/kg) |
|-------------------------------------|---------------------------------|
| 2,3,7,8-T <sub>4</sub> CDD(D48)     | 0.169 ± 0.012                   |
| 1,2,3,7,8-P <sub>5</sub> CDD(D54)   | 0.67 ± 0.04                     |
| 1,2,3,4,7,8-H <sub>6</sub> CDD(D66) | 0.95 ± 0.11                     |
| 1,2,3,6,7,8-H <sub>6</sub> CDD(D67) | 4.8 ± 0.4                       |
| 1,2,3,7,8,9-H <sub>6</sub> CDD(D70) | 2.84 ± 0.17                     |
| 2,3,7,8-T <sub>4</sub> CDF(F83)     | 0.90 ± 0.05                     |

| Substance                            | Cat. No. BCR490 Fly ash (µg/kg) |
|--------------------------------------|---------------------------------|
| 1,2,3,7,8-P <sub>5</sub> CDF(F94)    | 1.71 ± 0.12                     |
| 2,3,4,7,8-P <sub>5</sub> CDF(F114)   | 1.85 ± 0.11                     |
| 1,2,3,4,7,8-H <sub>6</sub> CDF(F118) | 2.37 ± 0.12                     |
| 1,2,3,6,7,8-H <sub>6</sub> CDF(F121) | 2.64 ± 0.14                     |
| 1,2,3,7,8,9-H <sub>6</sub> CDF(F124) | 0.34 ± 0.05                     |
| 2,3,4,6,7,8-H <sub>6</sub> CDF(F130) | 2.47 ± 0.17                     |

Availability: BCR490 consists of approximately 30 g of fly ash in amber glass bottles.

| Substance                             | Cat. No. BCR615 Fly ash (low level) (ng/kg) |   |                        |
|---------------------------------------|---------------------------------------------|---|------------------------|
| 2,3,7,8-T <sub>4</sub> CDD(D48)       | 27                                          | ± | 5                      |
| 1,2,3,7,8-P <sub>5</sub> CDD(D54)     | 92                                          | ± | 12                     |
| 1,2,3,4,7,8-H <sub>6</sub> CDD(D66)   | 74                                          | ± | 12                     |
| 1,2,3,6,7,8-H <sub>6</sub> CDD(D67)   | 103                                         | ± | 13                     |
| 1,2,3,7,8,9-H <sub>6</sub> CDD(D70)   | 108                                         | ± | 16                     |
| 1,2,3,4,6,7,8-H <sub>7</sub> CDD(D73) | 0.87 × 10 <sup>3</sup>                      | ± | 0.13 × 10 <sup>3</sup> |
| O <sub>8</sub> CDD(D75)               | 1.75 × 10 <sup>3</sup>                      | ± | 0.20 × 10 <sup>3</sup> |
| 2,3,7,8-T <sub>4</sub> CDF(F83)       | 86                                          | ± | 28                     |
| 1,2,3,7,8-P <sub>5</sub> CDF(F94)     | 176                                         | ± | 26                     |

Availability: BCR615 consists of approximately 50 g of dried fly ash in amber glass bottles.

| Substance         | Cat. No. BCR683 Beech wood (mg/kg) |   |     |
|-------------------|------------------------------------|---|-----|
| Benz[a]anthracene | 6.5                                | ± | 0.7 |
| Benzo[a]pyrene    | 3.4                                | ± | 0.4 |
| Benzo[e]pyrene    | 9.3                                | ± | 1.0 |

Availability: Glass bottle containing about 60 g of powder.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR682<br>Mussel tissue (µg/kg) | Cat. No. BCR718<br>Canned fresh herring (µg/kg) | Cat. No. BCR719<br>Canned fresh chub (ng/kg) |
|---------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|
| 28                                    | 0.30 ± 0.07                              | 0.41 ± 0.04                                     |                                              |
| 52                                    | 0.78 ± 0.09                              | 1.00 ± 0.04                                     |                                              |
| 77                                    |                                          |                                                 | 196 ± 6                                      |
| 81                                    |                                          |                                                 | 13.6 ± 0.4                                   |
| 101                                   |                                          | 2.12 ± 0.06                                     |                                              |
| 105                                   |                                          | 0.63 ± 0.06                                     |                                              |
| 118                                   | 2.6 ± 0.3                                | 1.78 ± 0.07                                     |                                              |
| 126                                   |                                          |                                                 | 20.0 ± 0.8                                   |
| 128                                   |                                          | 0.62 ± 0.101                                    |                                              |
| 138                                   | 4.6 ± 0.8                                | 2.97 ± 0.11                                     |                                              |
| 138 + 163                             |                                          |                                                 |                                              |
| 149                                   | 5.7 ± 0.9                                | 2.58 ± 0.11                                     |                                              |
| 153                                   | 9.2 ± 0.8                                | 4.62 ± 0.10                                     |                                              |
| 156                                   |                                          | 0.19 ± 0.09                                     |                                              |
| 169                                   |                                          |                                                 | 1.80 ± 0.15                                  |
| 170                                   | 0.17 ± 0.05                              | 0.350 ± 0.026                                   |                                              |
| 180                                   | 0.77 ± 0.07                              | 0.795 ± 0.027                                   |                                              |

Availability: BCR682, BCR718 and BCR719 are provided in sealed tin cans containing approximately 70 g fresh mussel tissue.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR420<br>Waste mineral oil (low level) (mg/kg) | Cat. No. BCR449<br>Waste mineral oil (high level) (mg/kg) |
|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| 28                                    | 0.61 ± 0.06                                              | 0.80 ± 0.07                                               |
| 52                                    |                                                          | 31.4 ± 1.8                                                |
| 101                                   | 1.45 ± 0.18                                              | 57.2 ± 1.9                                                |
| 105                                   |                                                          | 17.4 ± 1.0                                                |
| 118                                   | 1.69 ± 0.14                                              | 46.6 ± 2.4                                                |

| Polychlorinated biphenyls<br>(IUPAC No.) | Cat. No. BCR420<br>Waste mineral oil (low level) (mg/kg) | Cat. No. BCR449<br>Waste mineral oil (high level) (mg/kg) |
|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| 128                                      |                                                          | 12.5 ± 0.7                                                |
| 153                                      | 0.92 ± 0.06                                              | 39.0 ± 1.7                                                |
| 156                                      |                                                          | 6.9 ± 0.5                                                 |
| 170                                      |                                                          | 6.6 ± 0.6                                                 |
| 180                                      | 0.195 ± 0.017                                            | 10.4 ± 0.4                                                |

Availability: BCR420 is provided in units of about 7.5 g in glass ampoules and BCR449 in units of about 50 g in glass ampoules.

## 1.2.4 OTHERS

| Parameter                                    | Cat. No. IRMM4431 (EUROSOIL 1) | Cat. No. IRMM4432 (EUROSOIL 2) | Cat. No. IRMM4433 (EUROSOIL 3) |
|----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Kf of atrazine <sup>(1)</sup>                | 7.0 ± 1.5                      | 2.7 ± 0.7                      | 2.4 ± 0.7                      |
| 1/n of atrazine <sup>(1)</sup>               | 0.91 ± 0.11                    | 0.93 ± 0.12                    | 0.91 ± 0.13                    |
| Kf of 2,4-D <sup>(1)</sup>                   | 2.5 ± 1.0                      | 0.99 ± 0.30                    | 1.31 ± 0.28                    |
| 1/n of 2,4-D <sup>(1)</sup>                  | 0.9 ± 0.4                      | 0.96 ± 0.15                    | 0.93 ± 0.15                    |
| Kf of lindane <sup>(1)</sup>                 |                                | 48 ± 11                        |                                |
| 1/n of lindane <sup>(1)</sup>                |                                | 0.98 ± 0.15                    |                                |
| pH in water <sup>(2)</sup>                   | 6.21 ± 0.30                    | 8.1 ± 0.9                      | 6.2 ± 0.4                      |
| pH in 0.01M CaCl <sub>2</sub> <sup>(2)</sup> | 5.65 ± 0.24                    | 7.5 ± 0.8                      | 5.5 ± 0.4                      |

| Parameter                                    | Cat. No. IRMM4434 (EUROSOIL 4) | Cat. No. IRMM4435 (EUROSOIL 5) | Cat. No. IRMM4437 (EUROSOIL 7) |
|----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Kf of atrazine <sup>(1)</sup>                | 0.7 ± 0.4                      | 13 ± 6                         | 4.8 ± 1.1                      |
| 1/n of atrazine <sup>(1)</sup>               | 0.87 ± 0.22                    | 0.9 ± 0.4                      | 0.92 ± 0.15                    |
| Kf of 2,4-D <sup>(1)</sup>                   | 0.39 ± 0.21                    | 18 ± 7                         | 8.2 ± 1.8                      |
| 1/n of 2,4-D <sup>(1)</sup>                  | 0.9 ± 0.4                      | 0.9 ± 0.4                      | 0.88 ± 0.15                    |
| Kf of lindane <sup>(1)</sup>                 | 8.3 ± 2.2                      |                                |                                |
| 1/n of lindane <sup>(1)</sup>                | 0.96 ± 0.12                    |                                |                                |
| pH in water <sup>(2)</sup>                   | 7.5 ± 0.7                      | 4.1 ± 1.5                      | 5.1 ± 0.8                      |
| pH in 0.01M CaCl <sub>2</sub> <sup>(2)</sup> | 6.8 ± 0.6                      | 3.1 ± 1.1                      | 4.3 ± 0.7                      |

(1) Determination according OECD Testguideline 106.

(2) Measurement based on ISO Standard 10390.

Uncertainty express as estimated expanded uncertainty as defined in the Guide to the Expression of Uncertainty in Measurement (GUM).

Availability: Brown glass bottles with 200 g of air-dried fine soil (< 2 mm).

## 2.0 MATERIALS RELATED TO THE ANALYSIS OF FOOD AND FEEDING STUFF

### 2.1 PURE MATERIALS AND SYNTHETIC MIXTURES

| Cat. No. BCR123 Ethanol |                                                 |                                                 |                                                |
|-------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Parameter               | Ethanol H                                       | Ethanol M                                       | Ethanol L                                      |
| (D/H) <sub>I</sub>      | $109.65 \times 10^{-6} \pm 0.20 \times 10^{-6}$ | $101.69 \times 10^{-6} \pm 0.17 \times 10^{-6}$ | $90.30 \times 10^{-6} \pm 0.18 \times 10^{-6}$ |
| (D/H) <sub>II</sub>     | $119.76 \times 10^{-6} \pm 0.25 \times 10^{-6}$ | $130.94 \times 10^{-6} \pm 0.21 \times 10^{-6}$ | $122.20 \times 10^{-6} \pm 0.4 \times 10^{-6}$ |
| R                       | 2.184 ± 0.005                                   | 2.575 ± 0.006                                   | 2.708 ± 0.009                                  |

Availability: Units of 3 sealed NMR tubes containing respectively H-, M-, and L-ethanols, to which the tetramethylurea internal standard and the C<sub>6</sub>F<sub>6</sub> lock substance are added. 15 mm (BCR123B) O.D. NMR tubes can be supplied.

| Parameter                                   | Unit  | Cat. No. BCR656 (96% ethanol) |
|---------------------------------------------|-------|-------------------------------|
| (D/H) <sub>I</sub> by <sup>2</sup> H-NMR    | ppm   | 102.84 ± 0.20                 |
| (D/H) <sub>II</sub> by <sup>2</sup> H-NMR   | ppm   | 132.07 ± 0.30                 |
| R by <sup>2</sup> H-NMR                     |       | 2.570 ± 0.005                 |
| $\delta^{13}\text{C}_{\text{VPDB}}$ by IRMS | ‰     | -26.91 ± 0.07                 |
| Alcoholic grade tD                          | w/w % | (94)                          |

Value in brackets is not certified.

Availability: BCR656: Units of 25 mL of 96 % vol. neutral ethanol from wine in glass bottle.

| Parameter                                                         | Unit  | Cat. No. BCR657<br>(Sugar) | Cat. No. BCR658<br>(Synthetic wine) | Cat. No. BCR659<br>(Synthetic wine) | Cat. No. BCR660<br>(Ethanol in water) |
|-------------------------------------------------------------------|-------|----------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
| (D/H) <sub>I</sub> by <sup>2</sup> H-NMR                          | ppm   |                            |                                     |                                     | 102.90 ± 0.16                         |
| (D/H) <sub>II</sub> by <sup>2</sup> H-NMR                         | ppm   |                            |                                     |                                     | 131.95 ± 0.23                         |
| R by <sup>2</sup> H-NMR                                           |       |                            |                                     |                                     | 2.567 ± 0.005                         |
| $\delta^{13}\text{C}_{\text{VPDB}}$ by IRMS                       | ‰     | -10.76 ± 0.04              |                                     |                                     | -26.72 ± 0.09                         |
| $\delta^{18}\text{O}_{\text{VSOW}}$ of water<br>from wine by IRMS | ‰     |                            | -7.19 ± 0.04                        | -7.18 ± 0.02                        |                                       |
| (D/H)w of water<br>(IRMS)                                         | ppm   |                            |                                     |                                     | 148.68 ± 0.14                         |
| Alcoholic grade tD                                                | w/w % |                            |                                     |                                     | 11.96 ± 0.06 <sup>1)</sup>            |

1) in v/v %

Availability: BCR657: Units of approx. 1 g of dry glucose in a sealed amber vial;

BCR658: Units of 25 mL of synthetic wine solution in glass bottle;

BCR659: Units of 25 mL of synthetic wine solution in glass bottle;

BCR660: Units of 450 mL of aqueous ethanol solution in glass bottle.

### Tetramethylurea (Cat. No. STA003M)

Tetramethylurea (TMU) which is used as Internal Standard in routine SNIF-NMR analysis is available in 500 mL quantities. The D/H nominal value of tetramethylurea batches is determined by multiple calibration at 61.45/400 MHz, 61.4/400 MHz and 45.05/400 MHz for deuterium and given in an accompanying analytical report.

| Substance                | Cat. No. BCR423RM Aflatoxin M <sub>1</sub> in chloroform (µg/mL) |
|--------------------------|------------------------------------------------------------------|
| Aflatoxin M <sub>1</sub> | (9.93)                                                           |

Value in brackets is not certified.

Availability: Sealed ampoules containing about 2.5 mL.

| Compound       | Cat. No. BCR663 Saxitoxin in acetic acid |
|----------------|------------------------------------------|
|                | Mass fraction (mg/kg)                    |
| Saxitoxin-2HCl | 9.8 ± 1.2                                |

Availability: BCR-663 is available in ampoules containing 1 mL.

| Substance | Cat. No. ERMAC699 Zearalenone in acetonitrile |
|-----------|-----------------------------------------------|
|           | Mass concentration (µg/mL)                    |
| ZON       | 9.95 ± 0.30                                   |

Availability: ERMAC699 is supplied in ampoules filled and sealed under nitrogen in amounts of 4 mL.

| Substance    | Cat. No. ERMAC057 Aflatoxin B1 in acetonitrile |                                     |
|--------------|------------------------------------------------|-------------------------------------|
|              | Mass fraction (µg/g)                           | Mass concentration at 20 °C (µg/mL) |
| Aflatoxin B1 | 3.79 ± 0.11                                    | (2.97 + 0.09)                       |

Values in brackets are not certified.

Availability: ERMAC057 is supplied in amber glass ampoules filled with 4 mL.

| Substance    | Cat. No. ERMAC058 Aflatoxin B2 in acetonitrile |                                     |  |
|--------------|------------------------------------------------|-------------------------------------|--|
|              | Mass fraction (µg/g)                           | Mass concentration at 20 °C (µg/mL) |  |
| Aflatoxin B2 | 3.80 ± 0.08                                    | (2.98 + 0.06)                       |  |

Values in brackets are not certified.

Availability: ERMAC058 is supplied in amber glass ampoules filled with 4 mL.

| Substance    | Cat. No. ERMAC059 Aflatoxin G1 in acetonitrile |                                     |  |
|--------------|------------------------------------------------|-------------------------------------|--|
|              | Mass fraction (µg/g)                           | Mass concentration at 20 °C (µg/mL) |  |
| Aflatoxin G1 | 3.78 ± 0.13                                    | (2.96 + 0.10)                       |  |

Values in brackets are not certified.

Availability: ERMAC059 is supplied in amber glass ampoules filled with 4 mL.

| Substance    | Cat. No. ERMAC060 Aflatoxin G2 in acetonitrile |                                     |  |
|--------------|------------------------------------------------|-------------------------------------|--|
|              | Mass fraction (µg/g)                           | Mass concentration at 20 °C (µg/mL) |  |
| Aflatoxin G2 | 3.80 ± 0.07                                    | (2.98 + 0.06)                       |  |

Values in brackets are not certified.

Availability: ERMAC060 is supplied in amber glass ampoules filled with 4 mL.

| Substance        | Cat. No. IRMM315 4-Deoxynivalenol in acetonitrile |                            |  |
|------------------|---------------------------------------------------|----------------------------|--|
|                  | Mass fraction (µg/g)                              | Mass concentration (µg/mL) |  |
| 4-Deoxynivalenol | 25.1 ± 1.2                                        | (19.7 + 0.9)               |  |

Values in brackets are not certified.

Availability: IRMM315 is supplied in amber glass ampoules filled with 4 mL.

| Substance | Cat. No. IRMM316 Nivalenol in acetonitrile |                            |  |
|-----------|--------------------------------------------|----------------------------|--|
|           | Mass fraction (µg/g)                       | Mass concentration (µg/mL) |  |
| Nivalenol | 24.0 ± 1.1                                 | (18.8 + 0.9)               |  |

Values in brackets are not certified.

Availability: IRMM316 is supplied in amber glass ampoules filled with 4 mL.

## 2.2 MATRIX MATERIALS

### 2.2.1 CERTIFIED FOR GMO CONTENT

The materials were prepared by quantitative mixing of non-genetically modified powder and genetically modified powder, produced from ground seed with the help of a dry-mixing technique, and are intended for the calibration of methods for the detection of genetically modified food.

#### CRMs for genetically modified Roundup Ready™ soya beans (Cat. No. ERMBF410k)

Six CRMs of dried soya bean powder with different mass fractions of genetically modified (Roundup Ready™) soya beans were produced by IRMM.

| Cat. No.   | Certified value Roundup Ready mass fraction (g/kg) | Uncertainty (g/kg) |
|------------|----------------------------------------------------|--------------------|
| ERMBF410ak | < 0.7                                              | -                  |
| ERMBF410bk | 1.0                                                | 0.5                |
| ERMBF410dk | 10.0                                               | 1.0                |
| ERMBF410gk | 100                                                | 7                  |

Availability: Vials containing about 1 g of soya bean powder.

### CRMs for genetically modified Bt-176 maize (Cat. No. ERMBF411)

Six CRMs of dried maize powder with different mass fractions of genetically modified (Bt 176) maize were produced by IRMM.

| Cat. No.  | Certified value Bt-176 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|---------------------------------------------|--------------------|
| ERMBF411a | < 0.14                                      | -                  |
| ERMBF411b | 1.00                                        | 0.29               |
| ERMBF411c | 5.0                                         | 0.6                |
| ERMBF411d | 10.0                                        | 0.8                |
| ERMBF411e | 20.0                                        | 1.1                |
| ERMBF411f | 50.0                                        | 1.8                |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified Bt-11 maize (Cat. No. ERMBF412)

Six CRMs of dried maize powder with different mass fractions of genetically modified (Bt- 11) maize were produced by IRMM.

| Cat. No.  | Certified value Bt-11 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|--------------------------------------------|--------------------|
| ERMBF412a | < 0.12                                     | -                  |
| ERMBF412b | 0.98                                       | 0.29               |
| ERMBF412c | 4.9                                        | 0.6                |
| ERMBF412d | 9.8                                        | 0.9                |
| ERMBF412e | 19.6                                       | 1.3                |
| ERMBF412f | 48.9                                       | 2.1                |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified MON 810 maize (Cat. No. ERMBF413k)

Four CRMs of dried maize powder with different mass fractions of genetically modified (MON 810) maize were produced by IRMM.

| Cat. No.     | Certified value MON 810 mass fraction (g/kg) | Uncertainty (g/kg) |
|--------------|----------------------------------------------|--------------------|
| ERMBF413ak   | < 0.9                                        | -                  |
| ERMBF413ck   | 4.9                                          | 1.0                |
| ERMBF413ek * | 19.8                                         | 1.5                |
| ERMBF413gk   | 99                                           | 5                  |

Availability: Vials containing about 1 g of maize powder.

\* ERMBF413ek is also certified for the DNA copy number ratio.

| Cat. No.   | Certified value MON 810 DNA copy number ratio (%) | Uncertainty (%) |
|------------|---------------------------------------------------|-----------------|
| ERMBF413ek | 0.77                                              | 0.08            |

| Cat. No.   | Certified value MON 810 DNA copy number ratio (%) | Uncertainty (%) |
|------------|---------------------------------------------------|-----------------|
| ERMBF413ek | 0.77                                              | 0.08            |

| Substance                                      | Cat. No. ERMAD413 DNA fragments per plasmid |
|------------------------------------------------|---------------------------------------------|
| Number                                         |                                             |
| Fragment of 5' plant-P35S junction DNA/plasmid | 1 (negligible uncertainty)                  |
| Fragment of <i>hmg</i> DNA/plasmid             | 1 (negligible uncertainty)                  |

| Substance                                                                                                                                                            | Cat. No. ERMAD413 DNA fragments per plasmid              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                      | Number ratio                                             |
| Ratio between the number of 5' <i>plant</i> -P35S junction and <i>hmg</i> fragments in the plasmid by duplex rt-PCR <sup>(1)</sup> and simplex rt-PCR <sup>(2)</sup> | (1.00 <sup>1</sup> ± 0.06)<br>(1.04 <sup>2</sup> ± 0.06) |

Values in brackets are not certified.

Availability: ERMAD413 is available in vials.

### CRMs for genetically modified GA21 maize (Cat. No. ERMBF414)

Six CRMs of dried maize powder with different mass fractions of genetically modified (GA21) maize were produced by IRMM.

| Cat. No.  | Certified value GA21 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------|--------------------|
| ERMBF414a | < 0.8                                     | -                  |
| ERMBF414b | 1.0                                       | 0.8                |
| ERMBF414c | 4.9                                       | 1.0                |
| ERMBF414d | 9.9                                       | 1.1                |
| ERMBF414e | 17.2                                      | 1.2                |
| ERMBF414f | 42.9                                      | 1.7                |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified NK603 maize (Cat No. ERMBF415)

Six CRMs of dried maize powder with different mass fractions of genetically modified (NK603) maize were produced by IRMM.

| Cat. No.    | Certified value NK603 mass fraction (g/kg) | Uncertainty (g/kg) |
|-------------|--------------------------------------------|--------------------|
| ERMBF415a   | < 0.4                                      | -                  |
| ERMBF415b   | 1.0                                        | 0.4                |
| ERMBF415c   | 4.9                                        | 0.5                |
| ERMBF415d   | 9.8                                        | 0.7                |
| ERMBF415e * | 19.6                                       | 0.9                |
| ERMBF415f   | 49.1                                       | 1.3                |

Availability: Vials containing about 1 g of maize powder.

\* ERMBF415e is also certified for the DNA copy number ratio.

| Cat. No.  | Certified value NK603 maize DNA copy number ratio (%) | Uncertainty (%) |
|-----------|-------------------------------------------------------|-----------------|
| ERMBF415e | 0.95                                                  | 0.11            |

| Cat. No. ERMAD415                                  | DNA fragments per plasmid  |
|----------------------------------------------------|----------------------------|
|                                                    | Number                     |
| Fragment of 3' insertion-specific DNA / pIRMM-0086 | 1 (negligible uncertainty) |
| Fragment of <i>hmg</i> DNA / pIRMM-0086            | 1 (negligible uncertainty) |

Availability: ERMAD415 is available in vials.

### CRMs for genetically modified MON 863 maize (Cat. No. ERMBF416)

Four CRMs of dried maize powder with different mass fractions of genetically modified (MON 863) maize were produced by IRMM.

| Cat. No.  | Certified value MON 863 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|----------------------------------------------|--------------------|
| ERMBF416a | < 1.0                                        | -                  |
| ERMBF416b | 1.0                                          | -0.3 ; + 1.0       |

| Cat. No.  | Certified value MON 863 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|----------------------------------------------|--------------------|
| ERMBF416c | 9.8                                          | - 0.7 ; + 1.2      |
| ERMBF416d | 98.5                                         | - 2.2 ; + 2.       |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified MON 863 x MON 810 maize (Cat. No. ERMBF417)

Four CRMs of dried maize powder with different mass fractions of genetically modified (MON 863 x MON 810) maize were produced by IRMM.

| Cat. No.  | Certified value MON 863 x MON 810 mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|--------------------------------------------------------|--------------------|
| ERMBF417a | < 1.0                                                  | -                  |
| ERMBF417b | 1.0                                                    | - 0.2 ; + 1.0      |
| ERMBF417c | 9.8                                                    | - 0.7 ; + 1.2      |
| ERMBF417d | 98.5                                                   | - 2.0 ; + 2.4      |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified 1507 maize (Cat. No. ERMBF418)

Four CRMs of dried maize powder with different mass fractions of genetically modified (1507) maize were produced by IRMM.

| Cat. No.  | Certified value 1507 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------|--------------------|
| ERMBF418a | < 0.5                                           | -                  |
| ERMBF418b | 1.0                                             | - 0.2 ; + 0.6      |
| ERMBF418c | 9.9                                             | - 0.6 ; + 0.8      |
| ERMBF418d | 98.6                                            | - 1.7 ; + 2.0      |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified H7-1 sugar beet (Cat. No. ERMBF419)

Two CRMs of dried sugar beet powder with different mass fractions of genetically modified (H7-1) sugar beet were produced by IRMM.

| Cat. No.  | Certified value H7-1 sugar beet mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|------------------------------------------------------|--------------------|
| ERMBF419a | 0                                                    |                    |
| ERMBF419b | 1000                                                 |                    |

Availability: Vials containing about 1 g of sugar beet powder.

### CRMs for genetically modified 3272 maize (Cat. No. ERMBF420)

Three CRMs of dried maize powder with different mass fractions of genetically modified (3272) maize were produced by IRMM.

| Cat. No.  | Certified value 3272 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------|--------------------|
| ERMBF420a | < 1.3                                           | -                  |
| ERMBF420b | 9.8                                             | 1.2                |
| ERMBF420c | 98                                              | 8                  |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified EH92-527-1 potato (Cat. No. ERMBF421)

Two CRMs of dried potato powder with different mass fractions of genetically modified (EH92-527-1) potato were produced by IRMM.

| Cat. No.  | Certified value 3272 maize mass fraction (g/kg) | Certified property Identity         | Uncertainty    |
|-----------|-------------------------------------------------|-------------------------------------|----------------|
| ERMBF421a | 0                                               | potato without the EH92-527-1 event | Not applicable |
| ERMBF421b | 100                                             | EH92-527-1 potato                   |                |

Availability: ERMBF421a: vials containing about 1 g of potato powder, ERMBF421b: vials containing about 0.5 g of potato powder.

## CRMs for genetically modified 281-24-236 x 3006-210-23 cotton seed (Cat. No. ERMBF422)

Four CRMs of dried cotton seed powder with different mass fractions of genetically modified (281-24-236 x 3006-210-23) cotton seed were produced by IRMM.

| Cat. No.  | Certified value 281-24-236 x 3006-210-23 cotton seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|---------------------------------------------------------------------------|--------------------|
| ERMBF422a | < 0.5                                                                     | -                  |
| ERMBF422b | > 979                                                                     | -                  |
| ERMBF422c | 10.0                                                                      | 1.7                |
| ERMBF422d | 100                                                                       | 16                 |

Availability: Vials containing about 1 g of cotton seed powder.

## CRMs for genetically modified MIR604 maize (Cat. No. ERMBF423)

Four CRMs of dried maize powder with different mass fractions of genetically modified (MIR604) maize were produced by IRMM.

| Cat. No.  | Certified value MIR604 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|---------------------------------------------------|--------------------|
| ERMBF423a | < 0.9                                             | -                  |
| ERMBF423b | 1.0                                               | - 0.3 ; + 1.0      |
| ERMBF423c | 9.8                                               | - 0.9 ; + 1.3      |
| ERMBF423d | 98.5                                              | 16                 |

Availability: Vials containing about 1 g of maize powder.

## CRMs for genetically modified 59122 maize (Cat. No. ERMBF424)

Four CRMs of dried maize powder with different mass fractions of genetically modified (59122) maize were produced by IRMM.

| Cat. No.  | Certified value 59122 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|--------------------------------------------------|--------------------|
| ERMBF424a | < 1.2                                            | -                  |
| ERMBF424b | 1.0                                              | - 0.2 ; + 1.2      |
| ERMBF424c | 9.9                                              | - 0.8 ; + 1.4      |
| ERMBF424d | 98.7                                             | - 5.8 ; + 5.9      |

Availability: Vials containing about 1 g of maize powder.

## CRMs for genetically modified 356043 soya seed (Cat. No. ERMBF425)

Four CRMs of dried soya seed powder with different mass fractions of genetically modified soya seed were produced by IRMM.

| Cat. No.    | Certified value 59122 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-------------|--------------------------------------------------|--------------------|
| ERMBF425a   | < 0.5                                            | -                  |
| ERMBF425b   | 1.0                                              | 0.4                |
| ERMBF425c * | 10.0                                             | 1.1                |
| ERMBF425d   | 100                                              | 9                  |

Availability: Vials containing about 1 g of soya seed powder.

\* ERMBF425c is also certified for the DNA copy number ratio.

| Cat. No.  | Certified value 356043 soya DNA copy number ratio (%) | Uncertainty (%) |
|-----------|-------------------------------------------------------|-----------------|
| ERMBF425c | 0.85                                                  | 0.11            |

| Cat. No. ERMAD425                                        | DNA fragments per plasmid |                          |
|----------------------------------------------------------|---------------------------|--------------------------|
|                                                          | Number                    |                          |
| Fragment of 5' insert-to-plant junction DNA / pIRMM-0073 | 1                         | (negligible uncertainty) |
| Fragment of <i>le1</i> DNA / pIRMM-0073                  | 1                         | (negligible uncertainty) |

Availability: ERMAD425 is available in vials.

### CRMs for genetically modified 305423 soya seed (Cat. No. ERMBF426)

Four CRMs of dried soya seed powder with different mass fractions of genetically modified soya seed were produced by IRMM.

| Cat. No.  | Certified value 305423 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------------|--------------------|
| ERMBF426a | < 0.8                                                 | -                  |
| ERMBF426b | 5.0                                                   | 0.8                |
| ERMBF426c | 10.0                                                  | 1.0                |
| ERMBF426d | 100                                                   | 7                  |

Availability: Vials containing about 1 g of soya seed powder.

### CRMs for genetically modified 98140 maize (Cat. No. ERMBF427)

Four CRMs of dried maize seed powder with different mass fractions of genetically modified (98140) maize were produced by IRMM.

| Cat. No.    | Certified value 305423 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-------------|-------------------------------------------------------|--------------------|
| ERMBF427a   | < 0.4                                                 | -                  |
| ERMBF427b   | 5.0                                                   | 0.6                |
| ERMBF427c * | 20.0                                                  | 0.8                |
| ERMBF427d   | 100                                                   | 4                  |

Availability: Vials containing about 1 g of maize seed powder.

\* ERMBF427c is also certified for the DNA copy number ratio.

| Cat. No.  | Certified value 98140 maize DNA copy number ratio (%) | Uncertainty (%) |
|-----------|-------------------------------------------------------|-----------------|
| ERMBF427c | 1.75                                                  | 0.13            |

| Cat. No. ERMAD425                                        | DNA fragments per plasmid  |
|----------------------------------------------------------|----------------------------|
| Substance                                                | Number                     |
| Fragment of 5' insert-to-plant junction DNA / pIRMM-0090 | 1 (negligible uncertainty) |
| Fragment of <i>hmg</i> DNA / pIRMM-0090                  | 1 (negligible uncertainty) |

Availability: ERMAD425 is available in vials.

### CRMs for genetically modified GHB119 cotton (Cat. No. ERMBF428)

Three CRMs of dried cotton seed powder with different mass fractions of genetically modified (GHB119) cotton were produced by IRMM.

| Cat. No.  | Certified value 305423 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------------|--------------------|
| ERMBF428a | < 0.2                                                 | -                  |
| ERMBF428b | 10                                                    | 4                  |
| ERMBF428c | 100                                                   | 11                 |

Availability: Vials containing about 1 g of cotton seed powder.

### CRMs for genetically modified T304-40 cotton (Cat. No. ERMBF429)

Three CRMs of dried cotton seed powder with different mass fractions of genetically modified (T304-40) cotton were produced by IRMM.

| Cat. No.  | Certified value T304-40 cotton seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|----------------------------------------------------------|--------------------|
| ERMBF429a | < 0.4                                                    | -                  |
| ERMBF429b | 10                                                       | 1.3                |
| ERMBF429c | 100                                                      | 11                 |

Availability: Vials containing about 1 g of cotton seed powder.

### CRMs for genetically modified AM04-1020 potato (Cat. No. ERMBF430)

Five CRMs of dried potato powder with different mass fractions of genetically modified (AM04-1020) potato were produced by IRMM.

| Cat. No.  | Certified value AM04-1020 potato mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------------|--------------------|
| ERMBF430a | 0                                                     | -                  |
| ERMBF430b | 1000                                                  | -                  |
| ERMBF430c | 10                                                    | 1.4                |
| ERMBF430d | 40                                                    | 5                  |
| ERMBF430e | 100                                                   | 12                 |

Availability: Vials containing about 1 g of potato powder.

### CRMs for genetically modified AV43-6-G7 potato (Cat. No. ERMBF431)

Five CRMs of dried potato powder with different mass fractions of genetically modified potato AV43-6-G7 were produced by IRMM.

| Cat. No.  | Certified value AV43-6-G7 potato mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-------------------------------------------------------|--------------------|
| ERMBF431a | 0                                                     | -                  |
| ERMBF431b | 1000                                                  | -                  |
| ERMBF431c | 9.9                                                   | 1.3                |
| ERMBF431d | 40                                                    | 5                  |
| ERMBF431e | 99                                                    | 10                 |

Availability: Vials containing about 1 g of potato powder

### CRMs for genetically modified DAS-68416-4 soya seed (Cat. No. ERMBF432)

Four CRMs of dried soya seed powder with different mass fractions of genetically modified soya seed DAS-68416-4 were produced by IRMM.

| Cat. No.  | Certified value DAS-68416-4 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|------------------------------------------------------------|--------------------|
| ERMBF432a | < 0.3                                                      | -                  |
| ERMBF432b | 5.0                                                        | 0.6                |
| ERMBF432c | 10.0                                                       | 1.7                |
| ERMBF432d | 100                                                        | 13                 |

Availability: Vials containing about 1 g of soya seed powder.

### CRMs for genetically modified DAS-40278-9 maize (Cat. No. ERMBF433)

Four CRMs of dried maize powder with different mass fractions of genetically modified DAS-40278-9 maize were produced by IRMM.

| Cat. No.  | Certified value DAS-40278-9 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|--------------------------------------------------------|--------------------|
| ERMBF433a | < 0.3                                                  | -                  |
| ERMBF433b | 5.0                                                    | 0.6                |

| Cat. No.  | Certified value DAS-40278-9 maize mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|--------------------------------------------------------|--------------------|
| ERMBF433c | 10.0                                                   | 0.9                |
| ERMBF433d | 100                                                    | 8                  |

Availability: Vials containing about 1 g of maize powder.

### CRMs for genetically modified 73496 rapeseed (Cat. No. ERMBF434)

Five CRMs of dried rapeseed powder with different mass fractions of genetically modified rapeseed 73496 were produced by IRMM.

| Cat. No.  | Certified value 73496 rapeseed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-----------------------------------------------------|--------------------|
| ERMBF434a | < 0.04                                              | -                  |
| ERMBF434b | >988                                                | -                  |

| Cat. No.  | Certified value 73496 rapeseed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|-----------------------------------------------------|--------------------|
| ERMBF434c | 1.00                                                | 0.15               |
| ERMBF434d | 10.0                                                | 1.4                |
| ERMBF434e | 100                                                 | 12                 |

Availability: Vials containing about 1 g of rapeseed powder.

### CRMs for genetically modified PH05-026-0048 potato (Cat. No. ERMBF435)

Two CRMs for the detection of genetically modified PH05-026-0048 potato were produced by IRMM.

| Cat. No.  | Certified value PH05-026-0048 potato mass fraction (g/kg) |
|-----------|-----------------------------------------------------------|
| ERMBF435a | < 0.4                                                     |

| Cat. No.  | Certified identity               |
|-----------|----------------------------------|
| ERMBF435b | Positive for event PH05-026-0048 |

Availability: Vials containing about 1 g of potato powder

### CRMs for genetically modified DAS-44406-6 soya seed (Cat. No. ERMBF436)

Five CRMs of dried soya seed powder with different mass fractions of genetically modified soya seed DAS-44406-6 were produced by IRMM.

| Cat. No.  | Certified value DAS-44406-6 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|------------------------------------------------------------|--------------------|
| ERMBF436a | < 0.06                                                     | -                  |
| ERMBF436b | >986                                                       | -                  |
| ERMBF436c | 1.00                                                       | 0.14               |
| ERMBF436d | 10.0                                                       | 1.0                |
| ERMBF436e | 100                                                        | 9                  |

Availability: Vials containing about 1 g of soya seed powder.

### CRMs for genetically modified DAS-81419-2 soya seed (Cat. No. ERMBF437)

Five CRMs of dried soya seed powder with different mass fractions of genetically modified soya seed DAS-81419-2 were produced by IRMM.

| Cat. No.  | Certified value DAS-81419-2 soya seed mass fraction (g/kg) | Uncertainty (g/kg) |
|-----------|------------------------------------------------------------|--------------------|
| ERMBF437a | < 0.07                                                     | -                  |
| ERMBF437b | >986                                                       | -                  |
| ERMBF437c | 0.99                                                       | 0.12               |
| ERMBF437d | 9.9                                                        | 1.5                |
| ERMBF437e | 100                                                        | 9                  |

Availability: Vials containing about 1 g of soya seed powder.

## 2.2.2 CERTIFIED FOR NATURAL TOXINS AND XENOBIOTICS

| Substance            | Cat. No. BCR459 Coconut oil (µg/kg) | Substance              | Cat. No. BCR459 Coconut oil (µg/kg) |
|----------------------|-------------------------------------|------------------------|-------------------------------------|
| Pyrene               | < 0.9                               | Benzo[a]pyrene         | < 0.3                               |
| Chrysene             | < 0.6                               | Benzo[ghi]perylene     | < 0.2                               |
| Benzo[k]fluoranthene | < 0.2                               | Indeno[1,2,3-cd]pyrene | < 0.2                               |

Availability: BCR459 is provided in ampoules containing approximately 45 g.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR450<br>Natural milk powder (µg/kg) | Cat. No. ERM-BB444<br>Natural pork fat (blank) (µg/kg) | Cat. No. ERM-BB445<br>Spiked pork fat (very low level) (µg/kg) | Cat. No. ERM-BB446<br>Spiked pork fat (low level) (µg/kg) |
|---------------------------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|
| 28                                    |                                                | < 2                                                    | 14.8 ± 1.3                                                     | 29.6 ± 2.1                                                |
| 52                                    | 1.16 ± 0.17                                    | < 2                                                    | 12.9 ± 0.9                                                     | 25.5 ± 1.8                                                |
| 101                                   |                                                | < 2                                                    | 12.5 ± 1.2                                                     | 30 ± 4                                                    |
| 118                                   | 3.3 ± 0.4                                      | < 2                                                    | 12.7 ± 1.3                                                     | 30.2 ± 2.7                                                |
| 138                                   |                                                | < 2                                                    | 14.6 ± 1.6                                                     | 32 ± 4                                                    |
| 153                                   | 19.0 ± 0.7                                     | < 2                                                    | 13.1 ± 1.1                                                     | 30.8 ± 2.4                                                |
| 156                                   | 1.62 ± 0.20                                    |                                                        |                                                                |                                                           |
| 170                                   | 4.8 ± 0.6                                      |                                                        |                                                                |                                                           |
| 180                                   | 11.0 ± 0.7                                     | < 2                                                    | 12.6 ± 0.9                                                     | 29.8 ± 2.5                                                |
| sum (28, 52, 101, 118, 138, 153, 180) |                                                | < 14                                                   | 93 ± 7                                                         | 207 ± 11                                                  |
| *PDBE 47                              |                                                | (3.7)                                                  | (3.9)                                                          | (6.1)                                                     |
| γ-HCH (lindane)                       |                                                | (5.7)                                                  | (5.6)                                                          | (4.6)                                                     |

\* 2,2',4,4'-Tetrabromo-diphenylether

Values in brackets are not certified.

Availability: BCR450 in brown glass bottles of about 20 g. ERM-BB444 to 446 in glass ampoules of about 5 g.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR349<br>Cod liver oil (µg/kg) | Cat. No. ERM-BB350<br>Fish oil (ng/g) |
|---------------------------------------|------------------------------------------|---------------------------------------|
| 28                                    | 68 ± 8                                   | 21.3 ± 1.1                            |
| 52                                    | 149 ± 21                                 | 37.4 ± 2.2                            |
| 74                                    | 1.3                                      | 23.0 ± 1.9                            |
| 95                                    |                                          | (38 ± 47)                             |
| 99                                    | 10                                       | 62 ± 6                                |
| 101                                   | 372 ± 18                                 | 111 ± 5                               |
| 105                                   |                                          | 25.8 ± 2.1                            |
| 110                                   |                                          | 54.1 ± 2.8                            |
| 118                                   | 460 ± 40                                 | 84 ± 4                                |
| 138                                   |                                          | 137 ± 10                              |
| 149                                   |                                          | 88 ± 9                                |

Values in brackets are not certified.

Availability: BCR349 and ERM-BB350 are provided in sealed glass ampoules containing approximately 2 g fish oil.

| Polychlorinated biphenyls (IUPAC No.) | Cat. No. BCR349<br>Cod liver oil (µg/kg) | Cat. No. ERM-BB350<br>Fish oil (ng/g) |
|---------------------------------------|------------------------------------------|---------------------------------------|
| 153                                   | 940 ± 40                                 | 220 ± 11                              |
| 156                                   |                                          | 20.1 ± 1.3                            |
| 163                                   |                                          | (43 ± 73)                             |
| 167                                   |                                          | (17 ± 27)                             |
| 177                                   |                                          | 25.8 ± 2.0                            |
| 180                                   | 282 ± 23                                 | 67 ± 4                                |
| 183                                   |                                          | 22.5 ± 1.8                            |
| 187                                   |                                          | 67 ± 5                                |
| 194                                   |                                          | 23.4 ± 1.5                            |
| 196                                   |                                          | 41 ± 7                                |

| Substance    | Cat. No. BCR598 Cod liver oil (µg/kg) |
|--------------|---------------------------------------|
| HCB          | 55.7 ± 2.0                            |
| α-HCH        | 42 ± 3                                |
| β-HCH        | 16 ± 3                                |
| γ-HCH        | 23 ± 4                                |
| γ-Chlordane  | 6.9 ± 1.6                             |
| α-Chlordane  | 24.4 ± 1.8                            |
| Oxychlordane | 11.0 ± 1.8                            |

| Substance      | Cat. No. BCR598 Cod liver oil (µg/kg)     |
|----------------|-------------------------------------------|
| Transnonachlor | 39 ± 4                                    |
| Dieldrin       | 59 ± 4                                    |
| p,p'-DDE       | $0.61 \times 10^3$ ± $0.04 \times 10^3$   |
| o,p'-DDD       | 30 ± 4                                    |
| p,p'-DDD       | $0.40 \times 10^3$ ± $0.03 \times 10^3$   |
| p,p'-DDT       | $0.179 \times 10^3$ ± $0.018 \times 10^3$ |

Availability: BCR598 is provided in sealed glass ampoules containing approximately 5 g under dry argon.

| Substance | Cat. No. ERM-BB430 Pork fat (mg/kg) |
|-----------|-------------------------------------|
| HCB       | 0.193 ± 0.017                       |
| α-HCH     | 0.25 ± 0.04                         |
| β-HCH     | 0.109 ± 0.010                       |
| γ-HCH     | (1.87 ± 0.31)                       |
| β-HEPO    | 0.213 ± 0.016                       |

Values in brackets are not certified.

Availability: ERM-BB430 is provided in sealed amber glass ampoules containing approximately 5 g of material bottled under argon.

| Substance   | Cat. No. BCR115 Animal feed (mg/kg) |
|-------------|-------------------------------------|
| HCB         | 0.0194 ± 0.0014                     |
| β-HCH       | 0.0234 ± 0.0026                     |
| γ-HCH       | 0.0218 ± 0.0020                     |
| Heptachlor  | 0.0190 ± 0.0015                     |
| γ-Chlordane | 0.048 ± 0.006                       |

Availability: BCR115 is provided in sealed hard glass ampoules containing approximately 30 g under dry N<sub>2</sub>. The sample is a homogeneous animal feed obtained from commonly used ingredients and enriched with organochlorine pesticides.

| Substance | Cat. No. BCR187<br>Milk powder (µg/kg) | Cat. No. BCR188<br>Milk powder (spiked) (µg/kg) |
|-----------|----------------------------------------|-------------------------------------------------|
| HCB       | 1.45 ± 0.21                            | 37.4 ± 2.7                                      |
| α-HCH     | 1.80 ± 0.14                            |                                                 |
| β-HCH     |                                        | 12.0 ± 1.2                                      |
| γ-HCH     | 5.7 ± 0.8                              | 45.4 ± 2.9                                      |
| β-HEPO    |                                        | 32.0 ± 1.9                                      |

Availability: The samples are provided in sealed hard glass ampoules containing about 20 g (under Argon).

| Substance                              | Cat. No. BCR607<br>Natural spray dried milk powder (ng/kg) |
|----------------------------------------|------------------------------------------------------------|
| 2,3,7,8 - T <sub>4</sub> CDD (D48)     | 0.25 ± 0.03                                                |
| 1,2,3,7,8 - P <sub>5</sub> CD (D54)    | 0.79 ± 0.04                                                |
| 1,2,3,4,7,8 - H <sub>6</sub> CDD (D66) | 0.42 ± 0.07                                                |
| 1,2,3,6,7,8 - H <sub>6</sub> CDD (D67) | 0.98 ± 0.11                                                |
| 1,2,3,7,8,9 - H <sub>6</sub> CDD (D70) | 0.34 ± 0.05                                                |
| 2,3,7,8 - T <sub>4</sub> CDF (F83)     | 0.05 ± 0.03                                                |

| Substance | Cat. No. ERM-BB430 Pork fat (mg/kg) |
|-----------|-------------------------------------|
| Dieldrin  | (0.21 ± 0.05)                       |
| Endrin    | (0.055 ± 0.016)                     |
| p,p'-DDT  | 0.48 ± 0.07                         |
| p,p'-DDD  | 0.222 ± 0.022                       |
| p,p'-DDE  | 0.38 ± 0.09                         |

| Substance | Cat. No. BCR187<br>Milk powder (µg/kg) | Cat. No. BCR188<br>Milk powder (spiked) (µg/kg) |
|-----------|----------------------------------------|-------------------------------------------------|
| p,p'-DDE  | 6.6 ± 0.6                              | 51 ± 4                                          |
| Dieldrin  |                                        | 36.1 ± 2.5                                      |
| Endrin    |                                        | 6.2 ± 0.9                                       |
| p,p'-DDT  |                                        | 69 ± 5                                          |

| Substance                               | Cat. No. BCR607<br>Natural spray dried milk powder (ng/kg) |
|-----------------------------------------|------------------------------------------------------------|
| 1,2,3,7,8 - P <sub>5</sub> CDF (F94)    | 0.054 ± 0.013                                              |
| 2,3,4,7,8 - P <sub>5</sub> CDF (F114)   | 1.81 ± 0.13                                                |
| 1,2,3,4,7,8 - H <sub>6</sub> CDF (F118) | 0.94 ± 0.04                                                |
| 1,2,3,6,7,8 - H <sub>6</sub> CDF (F121) | 1.01 ± 0.09                                                |
| 2,3,4,6,7,8 - H <sub>6</sub> CDF (F130) | 1.07 ± 0.05                                                |

Availability: Amber glass bottles containing approximately 100 g.

| Polychlorinated biphenyls<br>(IUPAC No.) | Cat. No. ERM-BB190 Rapeseed (colza) | Cat. No. ERM-BB366 Rapeseed (colza) | Cat. No. ERM-BB367 Rapeseed (colza) |
|------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                          | Certified values                    | Certified values                    | Certified values                    |
| Total glucosinolate content              | 23 ± 4 µmmol/kg                     | 11.9 ± 1.3 µmmol/kg                 | 99 ± 9 µmmol/kg                     |
| Sulphur content                          | 4.72 ± 0.22 µg/kg                   | 3.31 ± 0.17 µg/kg                   | 10.3 ± 0.5 µg/kg                    |

Availability: 20 g whole seed in an aluminium plastic laminated sachet sealed under nitrogen.

| Substance                                   | Cat. No. BCR262R<br>Defatted peanut meal<br>(blank) | Cat. No. BCR263R<br>Defatted peanut<br>meal (medium level) | Cat. No. BCR264<br>Defatted peanut<br>meal (high level) | Cat. No. BCR375<br>Compound feed<br>(very low level blank) | Cat. No. ERM BE375<br>Compound feed<br>(very low level) | Cat. No. ERM BE376<br>Compound feed<br>(high level) |
|---------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Mass fraction (µg/kg)                       |                                                     |                                                            |                                                         |                                                            |                                                         |                                                     |
| Aflatoxin B1                                | < 3                                                 | 17.1 ± 2.4                                                 | 206 ± 13                                                | < 1                                                        | 2.6 ± 0.4                                               | 12.9 ± 1.8                                          |
| Aflatoxin B2                                |                                                     | 3.0 ± 0.4                                                  |                                                         |                                                            | 0.20 ± 0.04                                             | 0.68 ± 0.10                                         |
| Aflatoxin G1                                |                                                     | 3.0 ± 0.5                                                  |                                                         |                                                            | 0.40 ± 0.10                                             | 5.2 ± 0.8                                           |
| Aflatoxin G2                                |                                                     | (0.62 ± 0.21)                                              |                                                         |                                                            | < 0.2                                                   |                                                     |
| Sum of<br>aflatoxin B1,<br>B2, G1 and<br>G2 |                                                     | (23.7 ± 2.5)                                               |                                                         |                                                            |                                                         |                                                     |

Values in brackets are not certified.

Availability: Sachets sealed under vacuum containing about 100 g (BCR263R) and about 150 g (BCR264) of finely ground defatted peanut meal.

BCR262R is available in 280 mL amber glass bottles containing about 100 g of the peanut meal, additionally sealed in foil-laminate sachet.

BCR375 is supplied in units of about 50 g of a finely ground compound feed, ERM BE375 and ERM BE376 consist of 2 bottles filled with about 75 g of compound feedingstuff each.

| Cat. No. | Description                    | Aflatoxin M <sub>1</sub> (µg/kg) |
|----------|--------------------------------|----------------------------------|
| ERMBD282 | Whole milk powder (zero level) | < 0.02                           |
| ERMBD283 | Whole milk powder (low level)  | 0.111 + 0.018                    |
| ERMBD284 | Whole milk powder (high level) | 0.44 ± 0.06                      |

Availability: The materials are provided in units of 30 g in amber glass bottles filled and sealed under nitrogen.

| Substance | Cat. No. BCR377 Maize Flour (very low level blank) | Cat. No. BCR396 Wheat Flour (very low level blank) |
|-----------|----------------------------------------------------|----------------------------------------------------|
|           | Mass fraction (mg/kg)                              | Mass fraction (mg/kg)                              |
| DON       | < 0.05                                             | < 0.05                                             |

Availability: Sachets sealed under vacuum containing about 150 g of sealed finely ground flour.

| Substance    | Cat. No. BCR471 Wheat (blank) |
|--------------|-------------------------------|
|              | Mass fraction (µg/kg)         |
| Ochratoxin A | < 0.6                         |

Availability: Units of about 55 g in foil-laminate pouches sealed under vacuum.

| Compound                                 | Cat. No. BCR543 Mussel |
|------------------------------------------|------------------------|
|                                          | Mass fraction (mg/kg)  |
| Saxitoxin-2HCl                           | < 0.07                 |
| Saxitoxin-2HCl (if enriched with BCR663) | 0.48 ± 0.06            |
| dc-saxitoxin                             | < 0.04                 |

Availability: BCR543 is available in heat-sealed laminate sachets containing about 15 g of material each. BCR663 is available in ampoules containing 1 mL.

| Substance             | Cat. No. ERMBC716 Maize | Cat. No. ERMBC717 Maize |
|-----------------------|-------------------------|-------------------------|
| Mass fraction (µg/kg) |                         |                         |
| DON                   |                         | 673 ± 87                |
| NIV                   |                         | 53 ± 10                 |
| ZON                   | < 5                     | 83 ± 9                  |

Availability: ERMBC716 and ERMBC717 are supplied in sachets containing at least 60 g.

## 2.2.3 CERTIFIED FOR THE TOTAL ELEMENT CONTENT

| Substance | Cat. No. ERMBD150 Skimmed milk powder (g/kg) | Cat. No. ERMBD151 Skimmed milk powder (g/kg) |
|-----------|----------------------------------------------|----------------------------------------------|
| Ca        | 13.9 ± 0.8                                   | 13.9 ± 0.7                                   |
| Cl        | 9.7 ± 2.0                                    | 9.8 ± 1.2                                    |
| K         | 17.0 ± 0.7                                   | 17.0 ± 0.8                                   |
| Mg        | 1.26 ± 0.10                                  | 1.26 ± 0.07                                  |
| Na        | 4.18 ± 0.19                                  | 4.19 ± 0.23                                  |
|           | (mg/kg)                                      | (mg/kg)                                      |
| Cd        | 0.0114 ± 0.029                               | 0.106 ± 0.013                                |
| Cu        | 1.08 ± 0.06                                  | 5.00 ± 0.23                                  |
| Fe        | 4.6 ± 0.5                                    | 53 ± 4                                       |
| Hg        | 0.060 ± 0.007                                | 0.52 ± 0.04                                  |
| I         | 1.73 ± 0.14                                  | 1.78 ± 0.17                                  |
| Mn        | 0.289 ± 0.018                                | 0.29 ± 0.03                                  |
| Pb        | 0.019 ± 0.004                                | 0.207 ± 0.014                                |
| Se        | 0.188 ± 0.014                                | 0.19 ± 0.04                                  |
| Zn        | 44.8 ± 2.0                                   | 44.9 ± 2.3                                   |

Availability: Glass bottles containing 20 g of skimmed milk powder.

| Substance | Cat. No. ERMBB184<br>Bovine muscle (mg/kg) | Cat. No. ERMBB186<br>Pig kidney (mg/kg) | Cat. No. ERMBB422<br>Fish muscle (mg/kg) | Cat. No. BCR185R<br>Bovine live (mg/kg) |
|-----------|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|
| As        | 0.0234 ± 0.0026                            | (0.008 ± 0.006)                         | 12.7 ± 0.7                               | 0.0330 ± 0.0029                         |
| Cd        | 0.0022 ± 0.0004                            | 1.09 ± 0.05                             | 0.0075 ± 0.0018                          | 0.544 ± 0.017                           |
| Cu        | 2.31 ± 0.09                                | 36.5 ± 1.8                              | 1.67 ± 0.16                              | 277 ± 5                                 |
| Fe        | 75 ± 4                                     | 255 ± 13                                | 9.4 ± 1.4                                | -                                       |
| Hg        | (0.0018 ± 0.0010)                          | (0.023 ± 0.011)                         | 0.601 ± 0.030                            | -                                       |
| I         | -                                          | -                                       | 1.4 ± 0.4                                | -                                       |
| Mn        | 0.276 ± 0.013                              | 7.26 ± 0.25                             | 0.368 ± 0.028                            | 11.07 ± 0.29                            |
| Pb        | -                                          | 0.040 ± 0.005                           | -                                        | 0.172 ± 0.009                           |
| Se        | 0.45 ± 0.04                                | 10.3 ± 0.9                              | 1.33 ± 0.13                              | 1.68 ± 0.14                             |
| Zn        | 146 ± 7                                    | 134 ± 5                                 | 16.0 ± 1.1                               | 138.6 ± 2.1                             |

Values in brackets are not certified.

Availability: BCR185R is provided in units of 15 g as lyophilised powders, in screw-capped glass bottles. ERMBB184 is provided in units of 7 g as lyophilised powder, in brown-glass vials. ERMBB186 and ERMBB422 are provided in units of 10 g as lyophilised powders, in brown-glass vials

| Substance | Cat. No. BCR191 Brown bread |
|-----------|-----------------------------|
| Cd µg/kg  | 28.4 ± 1.4                  |
| Cu µmg/kg | 2.63 ± 0.07                 |
| Fe µmg/kg | 40.7 ± 2.3                  |

Availability: BCR191 is provided in units of 25 g.

| Substance | Cat. No. BCR191 Brown bread |
|-----------|-----------------------------|
| Mn µmg/kg | 20.3 ± 0.7                  |
| Pb µg/kg  | 187 ± 14                    |
| Zn µmg/kg | 19.5 ± 0.5                  |

Availability: Amber glass bottles containing about 15 g of powdered material.

| Substance | Cat. No. BCR273<br>Single cell protein (mg/g) | Cat. No. BCR274<br>Single cell protein (µg/g) |
|-----------|-----------------------------------------------|-----------------------------------------------|
| As        |                                               | 0.132 ± 0.014                                 |
| Ca        | 11.97 ± 0.14                                  |                                               |
| Cd        |                                               | 0.030 ± 0.002                                 |
| Co        |                                               | 0.039 ± 0.003                                 |
| Cu        |                                               | 13.1 ± 0.4                                    |
| Fe        | 0.156 ± 0.004                                 |                                               |
| K         | 2.22 ± 0.05                                   |                                               |

Availability: BCR273 and BCR274 are provided in units of 10 g as a dry powder in sealed glass ampoules.

| Substance | Cat. No. BCR273<br>Single cell protein (mg/g) | Cat. No. BCR274<br>Single cell protein (µg/g) |
|-----------|-----------------------------------------------|-----------------------------------------------|
| Mn        |                                               | 51.9 ± 1.2                                    |
| N         | 121.6 ± 0.8                                   |                                               |
| P         | 26.8 ± 0.4                                    |                                               |
| Pb        |                                               | 0.044 ± 0.010                                 |
| Se        |                                               | 1.03 ± 0.05                                   |
| Zn        |                                               | 42.7 ± 1.0                                    |

| Substance | Cat. No. BCR679 White cabbage |
|-----------|-------------------------------|
| B mg/kg   | (27.7 ± 1.9)                  |
| Ba mg/kg  | (10.3 ± 0.6)                  |
| Ca mg/kg  | (7768 ± 655)                  |
| Cd mg/kg  | 1.66 ± 0.07                   |
| Cr mg/kg  | (0.6 ± 0.1)                   |
| Cu mg/kg  | 2.89 ± 0.12                   |
| Fe mg/kg  | 55.0 ± 2.5                    |
| Hg µg/kg  | 6.3 ± 1.4                     |
| Mg mg/kg  | (1362 ± 127)                  |

| Substance | Cat. No. BCR679 White cabbage |
|-----------|-------------------------------|
| Mn mg/kg  | 13.3 ± 0.5                    |
| Mo mg/kg  | 14.8 ± 0.5                    |
| Ni mg/kg  | 27.0 ± 0.8                    |
| P mg/kg   | (3307 ± 241)                  |
| Sb µg/kg  | 20.6 ± 2.6                    |
| Sr mg/kg  | 11.8 ± 0.4                    |
| Tl µg/kg  | 3.0 ± 0.3                     |
| Zn mg/kg  | 79.7 ± 2.7                    |

Values in brackets are not certified.

Availability: BCR679 is provided in units of 15 g.

| Substance                                    | Cat. No. ERMBC381<br>Rye Flour | Cat. No. ERMBC382<br>Wheat Flour | Cat. No. BCR383<br>Haricots Verts (Beans) | Cat. No. ERMBB384<br>Lyophilised pork muscle |
|----------------------------------------------|--------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------|
| Major components (g / 100 g)                 |                                |                                  |                                           |                                              |
| Glucose                                      |                                |                                  | (12.4)                                    |                                              |
| Fructose                                     |                                |                                  | (4.6)                                     |                                              |
| Sucrose                                      |                                |                                  | (1.0)                                     |                                              |
| N (Kjeldahl)                                 | 1.562 ± 0.014                  | 1.851 ± 0.017                    | 1.05 ± 0.04                               | 14.2 ± 0.4                                   |
| Fat                                          | 1.36 ± 0.16                    | 1.39 ± 0.17                      |                                           | 8.99 ± 0.20                                  |
| Starch <sup>1)</sup>                         | 72.2 ± 1.9                     | 81.2 ± 1.7                       |                                           |                                              |
| Starch & Sugars <sup>2)</sup>                |                                |                                  | (78.9)                                    |                                              |
| Dietary Fibre (Englyst)                      |                                |                                  | (10.9)                                    |                                              |
| Dietary Fibre (AOAC 1985/1988) <sup>3)</sup> |                                |                                  | 11.9 ± 0.6                                |                                              |
| Ash at 550 °C                                | 1.08 ± 0.11                    | 0.60 ± 0.10                      | 2.39 ± 0.10                               | 4.51 ± 0.19                                  |
| Essential elements (g/kg)                    |                                |                                  |                                           |                                              |
| Ca                                           | 0.32 ± 0.04                    | 0.210 ± 0.018                    | 2.85 ± 0.23                               | 0.164 ± 0.021                                |
| K                                            | 3.35 ± 0.11                    | 1.88 ± 0.08                      | 7.8 ± 0.4                                 |                                              |
| Mg                                           | 0.567 ± 0.013                  | 0.247 ± 0.010                    | (0.9)                                     | 1.03 ± 0.04                                  |
| Na                                           |                                |                                  | 0.075 ± 0.007                             | 1.86 ± 0.15                                  |
| P                                            | 2.01 ± 0.07                    | 1.19 ± 0.07                      | (1.8)                                     | 8.7 ± 0.5                                    |

Values in brackets are not certified.

Availability: ERMBC381 and ERMBC382: 100 ml amber vial containing 37 g flour; ERMBB384: 2 vials of 9 g lyophilised material; BCR383: 100 g of powdered material in food grade laminated plastic/aluminium sachets sealed under nitrogen.

<sup>1)</sup>Mass fraction of polysaccharide in dry matter

<sup>2)</sup>Mass fraction of monosaccharides in dry matter

<sup>3)</sup>Prosky L. et al., J Assoc Off Anal Chem (1985) 68: 677-679, (1988) 71: 1017-1023

## 2.2.4 CERTIFIED FOR PROXIMATES AND CONVENTIONAL PROPERTIES

| Substance                   | Cat. No. BCR162R Soya-maize oil blend                                           |
|-----------------------------|---------------------------------------------------------------------------------|
| Methyl ester of             | Mass fraction fatty acid methyl ester / Total fatty acid methyl ester (g/100 g) |
| 16:0n-hexadecanoic acid     | 10.74 ± 0.16                                                                    |
| 18:0n-octadecanoic acid     | 2.82 ± 0.04                                                                     |
| 18:1n-octadecenoic acids    | (26.5)                                                                          |
| 18:2n-octadecadienoic acids | (54.68)                                                                         |

Values in brackets are not certified.

Availability: Each unit contains approximately 5.5 g soya-maize oil blend in 10 mL amber ampoule.

| Substance                              | Cat. No. BCR162R Soya-maize oil blend |
|----------------------------------------|---------------------------------------|
| 18:3n-octadecatrienoic acids           | (3.80)                                |
| 9c-18:1 n-octadecenoic acid            | 25.4 ± 0.4                            |
| 9c,12c-18:2n-octadecadienoic acid      | 54.13 ± 0.25                          |
| 9c,12c,15c-18:3n-octadecatrienoic acid | 3.35 ± 0.05                           |

| Substance                 | Cat. No. BCR163 Beef-pork fat oil blend                                            |
|---------------------------|------------------------------------------------------------------------------------|
| Methyl ester of           | Mass fraction fatty acid methyl ester / Total fatty acid methyl ester 1) (g/100 g) |
| 14:0n-tetradecanoic acids | 2.29 ± 0.04                                                                        |
| 16:0n-hexadecanoic acids  | 25.96 ± 0.30                                                                       |
| 16:1 n-hexadecenoic acids | 2.58 ± 0.16                                                                        |
| 18:0n-octadecanoic acids  | 18.29 ± 0.17                                                                       |
| 18:1n-octadecenoic acids  | 38.3 ± 0.4                                                                         |

| Substance                    | Cat. No. BCR163 Beef-pork fat oil blend                                            |
|------------------------------|------------------------------------------------------------------------------------|
| Methyl ester of              | Mass fraction fatty acid methyl ester / Total fatty acid methyl ester 1) (g/100 g) |
| 18:2n-octadecadienoic acids  | 7.05 ± 0.17                                                                        |
| 18:3n-octadecatrienoic acids | 0.86 ± 0.14                                                                        |
| Sterols                      | Mass fraction (mg/100 g) in fat                                                    |
| Cholesterol                  | 134 ± 5                                                                            |

Availability: In units of 2 × 5 mL in dark glass ampoules sealed under nitrogen.

1) Includes any geometric (i.e. cis/trans) and positional isomers, expressed as mass fraction of total fatty acid (methyl esters) derived from triglycerides.

2) These components are included in the Certified Value for this group of fatty acids.

The report gives additional indicative values: Fatty Acids and "Total" Sterol Mass Fraction.

| Component                           | Cat. No. BCR633<br>Tracers in anhydrous butter fat (mg/kg) |
|-------------------------------------|------------------------------------------------------------|
| β-Apo-8'-carotenic acid ethyl ester | 26.5 ± 1.4                                                 |
| β-Sitosterol                        | 530 ± 29                                                   |

| Component                     | Cat. No. BCR633<br>Tracers in anhydrous butter fat (mg/kg) |
|-------------------------------|------------------------------------------------------------|
| Stigmasterol                  | 147 ± 11                                                   |
| n-Heptanoic acid triglyceride | 1.06 * 103 ± 0.04 * 103                                    |

Availability: BCR 633 is supplied in units of about 5 g each in amber glass ampoules, which were filled under inert gas conditions (nitrogen).

| Component                                | Cat. No. IRMM801 Cocoa Butter (%) |
|------------------------------------------|-----------------------------------|
| 1,3-dipalmitoyl-2-oleyl-glycerol         | 18.14 ± 0.26                      |
| 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol | 44.68 ± 0.30                      |
| 1,2-dioleoyl-3-palmitoyl-glycerol        | 2.26 ± 0.16                       |
| 1,3-distearoyl-2-oleoyl-glycerol         | 31.63 ± 0.29                      |
| 1,2-dioleoyl-3-stearoyl-glycerol         | 3.29 ± 0.17                       |

Availability: IRMM801 is supplied in units of 5 g in brown amber glass ampoules sealed under argon/helium.

| Component   | Cat. No. BCR519 Anhydrous butter fat (%) |
|-------------|------------------------------------------|
| Cholesterol | 0.30 ± 0.03                              |
| C24         | 0.05 ± 0.02                              |
| C26         | 0.25 ± 0.03                              |
| C28         | 0.59 ± 0.04                              |
| C30         | 1.15 ± 0.05                              |
| C32         | 2.43 ± 0.12                              |
| C34         | 5.64 ± 0.18                              |

| Component | Cat. No. BCR519 Anhydrous butter fat (%) |
|-----------|------------------------------------------|
| C36       | 10.47 ± 0.19                             |
| C38       | 12.53 ± 0.22                             |
| C40       | 10.03 ± 0.16                             |
| C42       | 6.69 ± 0.10                              |
| C44       | 6.11 ± 0.08                              |
| C46       | 6.86 ± 0.08                              |
| C48       | 8.69 ± 0.15                              |

| Component | Cat. No. BCR519 Anhydrous butter fat (%) |
|-----------|------------------------------------------|
| C50       | 11.40 ± 0.24                             |
| C52       | 10.96 ± 0.25                             |

Availability: The material consists of anhydrous butter fat and is supplied in units of two glass ampoules sealed under nitrogen, each containing approximately 5 mL fat. At normal ambient temperature BCR519 is solid.

|             | Cat. No. BCR632 Butter fat                    |                                                      |
|-------------|-----------------------------------------------|------------------------------------------------------|
| Compound    | Cat. No. BCR632A<br>pure butter fat (g/100 g) | Cat. No. BCR632B<br>Adulterated butter fat (g/100 g) |
| C24         | 0.07 ± 0.04                                   | 0.08 ± 0.04                                          |
| Cholesterol | 0.289 ± 0.012                                 | 0.278 ± 0.011                                        |
| C26         | 0.33 ± 0.06                                   | 0.34 ± 0.06                                          |
| C28         | 0.74 ± 0.07                                   | 0.75 ± 0.06                                          |
| C30         | 1.37 ± 0.08                                   | 1.46 ± 0.07                                          |
| C32         | 2.83 ± 0.14                                   | 3.30 ± 0.12                                          |
| C34         | 6.09 ± 0.29                                   | 6.57 ± 0.25                                          |
| C36         | 10.7 ± 0.5                                    | 11.1 ± 0.4                                           |
| C38         | 12.5 ± 0.4                                    | 12.7 ± 0.4                                           |

Availability: BCR632 is available as a set of BCR632A and BCR632B: 2 amber glass ampoules each with approximately 5 mL.

|                                                            | Cat. No. BCR121<br>Wholemeal flour | Cat. No. BCR122<br>Margarine | Cat. No. BCR431<br>Brussels sprouts | Cat. No. BCR485<br>Mixed vegetables | Cat. No. BCR487<br>Pig's liver | Cat. No. ERMBD600<br>Whole milk powder |
|------------------------------------------------------------|------------------------------------|------------------------------|-------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|
| (mg/kg)                                                    |                                    |                              |                                     |                                     |                                |                                        |
| A (all-trans-retinol)                                      |                                    |                              |                                     |                                     |                                | 3.8 ± 0.6                              |
| A (all-trans-retinol and 13-cis-retinol)                   |                                    |                              |                                     |                                     |                                | 4.1 ± 0.8                              |
| B <sub>1</sub> (thiamin)                                   | 4.63 ± 0.39                        |                              |                                     | 3.07 ± 0.34                         | 8.6 ± 1.1                      | 4.5 ± 0.6                              |
| B <sub>2</sub> (riboflavin)                                |                                    |                              |                                     |                                     | 106.8 ± 5.6                    | 16.7 ± 1.4                             |
| B <sub>6</sub> (total pyridoxine)                          | 4.10 ± 1.02                        |                              |                                     | 4.8 ± 0.8                           | 19.3 ± 2.9                     |                                        |
| B <sub>12</sub> (cyanocobalamin)                           |                                    |                              |                                     |                                     | 1.12 ± 0.09                    | 0.32 ± 0.07                            |
| C (total ascorbate)                                        |                                    |                              | 4830 ± 240                          |                                     |                                | 74 ± 11                                |
| D <sub>3</sub> (cholecalciferol)                           |                                    | 0.125 ± 0.007                |                                     |                                     |                                |                                        |
| E (tocopherol)                                             |                                    | 241 ± 12                     |                                     |                                     |                                | 86 ± 15                                |
| Folate (total)                                             | 0.50 ± 0.07                        |                              |                                     | 3.15 ± 0.28                         | 13.3 ± 1.3                     |                                        |
| Niacin                                                     |                                    |                              | 43 ± 3                              |                                     |                                |                                        |
| Trans-α-carotene                                           |                                    |                              |                                     | 10.5 ± 0.6                          |                                |                                        |
| Trans-β-carotene                                           |                                    |                              |                                     | 23.7 ± 1.5                          |                                |                                        |
| Total-α-carotene                                           |                                    |                              |                                     | 9.8 ± 0.7                           |                                |                                        |
| Total-β-carotene                                           |                                    |                              |                                     | 25.6 ± 1.2                          |                                |                                        |
| Lutein                                                     |                                    |                              |                                     | 12.5 ± 0.8                          |                                |                                        |
| Lutein + zeaxanthin 5-methyltetrahydro-folic acid (5-MTHF) |                                    |                              |                                     | 22.3 ± 1.3<br>(2.14 + 0.42)         |                                |                                        |

Values in brackets are not certified;

Availability: BCR121: about 50 g unit size.

BCR122: can filled with about 200 g.

BCR431: about 20 g lyophilised and powdered material in food grade plastic/aluminium laminated sachets under nitrogen.

BCR485: about 25 g unit size.

BCR487: about 15 g unit size.

ERMBD600: sachet with about 100 g.

| Component | Cat. No. BCR519 Anhydrous butter fat (%) |
|-----------|------------------------------------------|
| C54       | 5.89 ± 0.13                              |

| Cat. No. | Description               | Amylose mass fraction (g/100 g) |
|----------|---------------------------|---------------------------------|
| BCR465   | Rice flour (low level)    | 15.40 ± 0.30                    |
| BCR466   | Rice flour (medium level) | 23.1 ± 0.5                      |
| BCR467   | Rice flour (high level)   | 27.7 ± 0.8                      |

Availability: 10 g of ground rice flour in vacuum sealed laminated polyester/aluminium/polyethylene sachets.

| Substance                                   | Cat. No. BCR644 Artificial foodstuff | Cat. No. BCR645 Artificial foodstuff |
|---------------------------------------------|--------------------------------------|--------------------------------------|
| Mass fraction on dry mass basis (g / 100 g) |                                      |                                      |
| Fructose                                    | 16.2 ± 1.1                           |                                      |
| Sucrose                                     | 10.81 ± 0.25                         | 26.2 ± 0.8                           |
| Lactose                                     | 15.85 ± 0.29                         | 27.8 ± 0.6                           |
| Starch / glucose                            | 35.1 ± 1.2                           | 25.2 ± 0.9                           |

Availability: BCR-644 and BCR-645 are supplied in units of approximately 50 g in 125 mL amber glass bottles.

|         | Cat. No. BCR651 Beer (% ethanol v/v) | Cat. No. BCR652 Beer (% ethanol v/v) | Cat. No. BCR653 Wine (% ethanol v/v) |
|---------|--------------------------------------|--------------------------------------|--------------------------------------|
| Ethanol | 0.505 ± 0.006                        | 0.051 ± 0.002                        | 0.539 ± 0.007                        |

Availability: Amber glass ampoule, flushed with nitrogen, containing 10 mL of sample.

| Substance                                    | Cat. No. ERMBC381<br>Rye Flour | Cat. No. ERMBC382<br>Wheat Flour | Cat. No. BCR383<br>Haricots Verts (Beans) | Cat. No. ERMBB384<br>Lyophilised pork muscle |
|----------------------------------------------|--------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------|
| Major components (g / 100 g)                 |                                |                                  |                                           |                                              |
| Glucose                                      |                                |                                  | (12.4)                                    |                                              |
| Fructose                                     |                                |                                  | (4.6)                                     |                                              |
| Sucrose                                      |                                |                                  | (1.0)                                     |                                              |
| N (Kjeldahl)                                 | 1.562 ± 0.014                  | 1.851 ± 0.017                    | 1.05 ± 0.04                               | 14.2 ± 0.4                                   |
| Fat                                          | 1.36 ± 0.16                    | 1.39 ± 0.17                      |                                           | 8.99 ± 0.20                                  |
| Starch <sup>1)</sup>                         | 72.2 ± 1.9                     | 81.2 ± 1.7                       |                                           |                                              |
| Starch & Sugars <sup>2)</sup>                |                                |                                  | (78.9)                                    |                                              |
| Dietary Fibre (Englyst)                      |                                |                                  | (10.9)                                    |                                              |
| Dietary Fibre (AOAC 1985/1988) <sup>3)</sup> |                                |                                  | 11.9 ± 0.6                                |                                              |
| Ash at 550 °C                                | 1.08 ± 0.11                    | 0.60 ± 0.10                      | 2.39 ± 0.10                               | 4.51 ± 0.19                                  |
| Essential elements (g/kg)                    |                                |                                  |                                           |                                              |
| Ca                                           | 0.32 ± 0.04                    | 0.210 ± 0.018                    | 2.85 ± 0.23                               | 0.164 ± 0.021                                |
| K                                            | 3.35 ± 0.11                    | 1.88 ± 0.08                      | 7.8 ± 0.4                                 |                                              |
| Mg                                           | 0.567 ± 0.013                  | 0.247 ± 0.010                    | (0.9)                                     | 1.03 ± 0.04                                  |
| Na                                           |                                |                                  | 0.075 ± 0.007                             | 1.86 ± 0.15                                  |
| P                                            | 2.01 ± 0.07                    | 1.19 ± 0.07                      | (1.8)                                     | 8.7 ± 0.5                                    |

Values in brackets are not certified.

Availability: ERMBC381 and ERMBC382: 100 ml amber vial containing 37 g flour; ERMBB384: 2 vials of 9 g lyophilised material; BCR383: 100 g of powdered material in food grade laminated plastic/aluminium sachets sealed under nitrogen.

<sup>1)</sup>Mass fraction of polysaccharide in dry matter

<sup>2)</sup>Mass fraction of monosaccharides in dry matter

<sup>3)</sup>Prosky L. et al., J Assoc Off Anal Chem (1985) 68: 677-679, (1988) 71: 1017-1023

| Substance           | Cat. No. BCR380R Whole milk powder (g/100 g) | Cat. No. BCR685 Skim milk powder (g/100 g) |
|---------------------|----------------------------------------------|--------------------------------------------|
| Mass fraction       |                                              |                                            |
| Crude protein       | 28.66 ± 0.28                                 | 38.2 ± 0.4                                 |
| (Kjeldahl-N x 6.38) | 26.95 ± 0.16                                 | 0.96 ± 0.12                                |
| Fat                 | 37.1 ± 1.0                                   |                                            |
| Lactose (anhydrous) | 6.00 ± 0.13                                  |                                            |
| Ash                 |                                              |                                            |

Availability: BCR380R is supplied in units of about 100 g, BCR685 in units of about 50 g, in amber glass bottles.

| Quantity               | Cat. No. BCR446 Low oil content rapeseed | Cat. No. BCR447 Medium oil content rapeseed |
|------------------------|------------------------------------------|---------------------------------------------|
|                        | Mass fraction (g/100 g)                  |                                             |
| 'As is' Oil            | 39.49 ± 0.15                             | 41.99 ± 0.15                                |
| Moisture and volatiles | 7.01 ± 0.07                              | 7.42 ± 0.07                                 |
| 'Dry basis' Oil        | 42.48 ± 0.15                             | 45.36 ± 0.15                                |

Availability: About 150 g of rapeseed in a specially laminated bag containing an oxygen absorber and sealed under dry argon.

| Substance           | Cat. No. BCR708<br>Dairy feed | Cat. No. BCR709<br>Pig feed |      |
|---------------------|-------------------------------|-----------------------------|------|
| Mass fraction       |                               |                             |      |
| Crude protein       | 240 ± 12                      | 199 ± 5                     | g/kg |
| Crude oils and fats | 65 ± 8                        | 51 ± 14                     | g/kg |
| Crude fibre         | 93 ± 14                       | 56 ± 12                     | g/kg |
| Crude ash           | 50.0 ± 3.0                    | 42 ± 4                      | g/kg |

Availability: 100 mL amber glass bottle containing about 40 g of material.

| Substance | Cat. No. BCR708<br>Dairy feed | Cat. No. BCR709<br>Pig feed |       |
|-----------|-------------------------------|-----------------------------|-------|
| Ca        | 4.8 ± 0.5                     | 1.05 ± 0.16                 | g/kg  |
| Cu        | 37 ± 4                        | 173 ± 25                    | mg/kg |
| Mg        | 1.47 ± 0.22                   | 1.89 ± 0.30                 | g/kg  |
| P         | 4.7 ± 0.4                     | 5.4 ± 0.7                   | g/kg  |

| Substance                       | Cat. No. ERMBC514<br>Haricot beans (g/kg) | Cat. No. ERMBC515<br>Carrot (g/kg) | Cat. No. ERMBC516<br>Apple (g/kg) | Cat. No. ERMBC517<br>Full fat soya flour (g/kg) | Cat. No. ERMBD518<br>Bran breakfast cereal (g/kg) |
|---------------------------------|-------------------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------|---------------------------------------------------|
| Dietary Fibres                  |                                           |                                    |                                   |                                                 |                                                   |
| Methods used:                   |                                           |                                    |                                   |                                                 |                                                   |
| AOAC 1990                       | 256 ± 5                                   | 311 ± 6                            | 164 ± 4                           | 126 ± 5                                         | 302 ± 8                                           |
| Englyst (by gas chromatography) | 198 ± 10                                  | 271 ± 6                            | 137 ± 5                           | 119 ± 7                                         | 241 ± 8                                           |
| Uppsala                         | 237 ± 15                                  | 298 ± 11                           | 162 ± 8                           | 128 ± 9                                         | 276 ± 18                                          |
| AOAC 1992 MES-TRIS              | 259 ± 15                                  | 295 ± 4                            | 149 ± 10                          | 124 ± 21                                        | 305 ± 6                                           |
| Englyst (by colorimetry)        | 201 ± 6                                   | 252 ± 12                           | 134 ± 5                           | 123 ± 8                                         | 250 ± 11                                          |

Availability: ERMBC514 to BC517 and ERMBD518 are supplied in units of approximately 25 g in food grade glass bottles sealed under vacuum.

|                                                                      | Cat. No. BCR537<br>Plastic film A (mg/dm <sup>2</sup> ) | Cat. No. BCR538<br>Plastic film B (mg/dm <sup>2</sup> ) | Cat. No. BCR539<br>Plastic film C (mg/dm <sup>2</sup> ) |
|----------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Overall migration by total immersion in olive oil 10 days at 40 °C   | 8.3 ± 1.0                                               |                                                         |                                                         |
| Overall migration by single sided cell in olive oil 10 days at 40 °C |                                                         | 5.7 ± 0.7                                               |                                                         |
| Overall migration by pouch in olive oil 10 days at 40 °C             |                                                         |                                                         | 6.1 ± 1.0                                               |

Availability: PET/foil/PE heat sealed pouches containing double thickness sheets of additive free linear low density polyethylene of (33 x 22.5) cm for BCR537, (125 x 22.5) cm for BCR538 and (45 x 25) cm for BCR539.

| Parameters<br>(determined according to ISO and ICC standards) | Cat. No. BCR563<br>Common wheat flour |
|---------------------------------------------------------------|---------------------------------------|
| Protein content/g/100 g dry matter basis                      | 11.71 ± 0.13                          |
| Ash content dry matter basis                                  | 0.562 ± 0.008                         |
| Falling number / s                                            | 319 ± 15                              |
| Zeleny sedimentation 4 volume / mL                            | 44 ± 1                                |
| CHOPIN ALVEOGRAPH                                             |                                       |
| P/mmH <sub>2</sub> O*                                         | 80.8 ± 2.1                            |
| L/mm**                                                        | 109 ± 7.2                             |
| P/L                                                           | 0.8 ± 0.1                             |
| W/(10 <sup>-4</sup> Joules)***                                | 289.9 ± 10.4                          |
| BRABENDER FARINOGRAPH                                         |                                       |
| Maximum consistency / BU (Brabender Units)                    | 499 ± 5                               |
| Development time / min.                                       | 1.7 ± 0.3                             |
| Stability / min.                                              | 2.5 ± 0.4                             |

| Parameters<br>(determined according to ISO and ICC standards) | Cat. No. BCR563<br>Common wheat flour |
|---------------------------------------------------------------|---------------------------------------|
| Degree of softening / BU (Brabender Units)                    | 87 ± 9                                |
| BRABENDER EXTENSOGRAPH                                        |                                       |
| Maximum resistance / EU (Brabender Extensograph Units)        | 446 ± 39                              |
| Resistance at 50 mm / EU (Brabender Extensograph Units)       | 261 ± 30                              |
| Energy / (cm <sup>2</sup> )                                   | 119 ± 14                              |
| Extensibility / mm                                            | 202 ± 9                               |
| MOISTURE MASS FRACTION [g/100 g]                              | 13.95 ± 0.04                          |

Availability: BCR563 is provided in vacuum sealed laminated foil envelopes in units of approximately 360 g.

\*P:Mean curve height of Alveograph.

\*\*L:Mean curve length.

\*\*\*W:Area under Alveograph curve.

## 2.2.5 CERTIFIED FOR MICROBIOLOGICAL PROPERTIES

### Cat. No. IRMM311: Genomic DNA (gDNA) of *Bacillus licheniformis* DSM 5749 in agarose inserts for Pulsed Field Gel Electrophoresis (PFGE)

| SfiI digested DNA fragments in the size interval 50 kb – 90 kb | Fragment length (kb) |
|----------------------------------------------------------------|----------------------|
| Band no1                                                       | 89.6 ± 4.7           |
| 2                                                              | 80.9 ± 2.5           |
| 3                                                              | 75.3 ± 2.7           |
| 4                                                              | 72.2 ± 3.5           |
| 5                                                              | 66.9 ± 1.9           |

| SfiI digested DNA fragments in the size interval 50 kb – 90 kb | Fragment length (kb) |
|----------------------------------------------------------------|----------------------|
| 6                                                              | 64.6 ± 2.9           |
| 7                                                              | 60.3 ± 1.3           |
| 8                                                              | 56.5 ± 1.3           |
| 9                                                              | 53.9 ± 1.3           |
| 10                                                             | 50.6 ± 1.3           |

Availability: Each vial contains one agarose insert of undigested genomic DNA of *Bacillus licheniformis* DSM 5749 for PFGE.

### Cat. No. IRMM312: Genomic DNA (gDNA) of *Bacillus subtilis* DSM 5750 in agarose inserts for Pulsed Field Gel Electrophoresis (PFGE)

| SfiI digested DNA fragments in the size interval 50 kb – 90 kb | Fragment length (kb) |
|----------------------------------------------------------------|----------------------|
| Band no1                                                       | 89.2 ± 0.9           |
| 2                                                              | 81.4 ± 0.8           |
| 3                                                              | 77.7 ± 0.6           |
| 4                                                              | 62.5 ± 1.8           |
| 5                                                              | 59.5 ± 2.1           |

| SfiI digested DNA fragments in the size interval 50 kb – 90 kb | Fragment length (kb) |
|----------------------------------------------------------------|----------------------|
| 6                                                              | 44.0 ± 2.4           |
| 7                                                              | 29.2 ± 2.0           |
| 8                                                              | 23.6 ± 1.3           |
| 9                                                              | 18.6 ± 1.3           |

Availability: Each vial contains one agarose insert of undigested genomic DNA of *Bacillus subtilis* DSM 5750 for PFGE.

### Cat. No. IRMM313: Genomic DNA (gDNA) of *Campylobacter coli* (CNET068) and *Campylobacter jejuni* (CNET112) in agarose inserts for Pulsed Field Gel Electrophoresis (PFGE)

| SmaI digested DNA fragments | DNA fragment sizes (kb) |
|-----------------------------|-------------------------|
| Fragment no 2               | 458.8 ± 2.0             |
| 3                           | 351.7 ± 2.4             |
| 4                           | 303.0 ± 2.3             |

| SmaI digested DNA fragments | DNA fragment sizes (kb) |
|-----------------------------|-------------------------|
| 5                           | 263.2 ± 1.9             |
| 6                           | 188.2 ± 1.2             |
| 7                           | 173.2 ± 1.3             |

| SmaI digested DNA fragments |  | DNA fragment sizes (kb) |
|-----------------------------|--|-------------------------|
| 8                           |  | 131.1 ± 1.5             |
| 9                           |  | 114.4 ± 1.2             |
| 10                          |  | 95.5 ± 1.4              |
| 11                          |  | 81.2 ± 1.7              |
| 12                          |  |                         |

| SmaI digested DNA fragments |  | DNA fragment sizes (kb) |
|-----------------------------|--|-------------------------|
| 13                          |  | 54.9 ± 2.2              |
| 14                          |  | 40.7 ± 1.6              |
| 15                          |  | (25.4 ± 1.3)            |
| 16                          |  | (17.6 ± 0.3)            |
|                             |  | (10.9 ± 0.4)            |

Values in brackets are not certified.

Availability: Each vial contains one agarose plug for PFGE with undigested genomic DNA of *Campylobacter coli* CNET068 and *Campylobacter jejuni* CNET112 embedded.

#### Cat. No. IRMM351: Escherichia coli 0157 in material spheres

|                                                 |  | Number of colony forming unit (cfu) |
|-------------------------------------------------|--|-------------------------------------|
| cfu per material sphere on nutrient agar        |  | 4 ± 2                               |
| cfu per material sphere on enterohemolysin agar |  | 4 ± 2                               |

Availability: Each vial contains one material sphere of Escherichia coli 0157 (NCTC 12900).

#### Cat. No. IRMM447: Genomic DNA (gDNA) of Listeria monocytogenes (strain 4B, NCTC 11994) with certified identity

|                                                            |  | Indicative value (µg) |
|------------------------------------------------------------|--|-----------------------|
| Mass of genomic DNA <i>Listeria monocytogenes</i> per vial |  | (1.1 ± 0.7)           |

Values in brackets are not certified.

Availability: Vial containing approximately 1.1 µg genomic DNA in lyophilised form and closed under argon atmosphere.

#### Cat. No. IRMM448: Genomic DNA (gDNA) of *Campylobacter Jejuni* (NCTC 11351) with certified identity

| Property                          |                        |
|-----------------------------------|------------------------|
| Identity                          | Confirmed by ceuE gene |
| Mass of genomic DNA per vial (ng) | (71 ± 39)              |

Values in brackets are not certified.

Availability: Vial containing approximately 71 ng genomic DNA in lyophilised form and closed under argon atmosphere.

#### Cat. No. IRMM449: Genomic DNA (gDNA) of Escherichia coli O157 (strain EDL 933) with certified identity

|                                               |  | Indicative value (µg) |
|-----------------------------------------------|--|-----------------------|
| Mass of genomic DNA Escherichia coli per vial |  | (1.3 ± 0.7)           |

Values in brackets are not certified.

Availability: Vial containing approximately 1.3 µg genomic DNA in lyophilised form and closed under argon atmosphere.

## 2.2.6 CERTIFIED FOR VETERINARY DRUGS

| Cat. No.                | Description  | Substance                | Hormones in lyophilised bovine urine |                                    |                                    |
|-------------------------|--------------|--------------------------|--------------------------------------|------------------------------------|------------------------------------|
|                         |              |                          | < 0.1                                | < 0.1                              | < 0.1                              |
| BCR386 <sup>(1)</sup>   | Bovine urine | Diethylstilboestrol(DES) |                                      |                                    |                                    |
| BCR387 <sup>(1)</sup>   | Bovine urine | Dienoestrol(DE)          |                                      |                                    |                                    |
| BCR388 <sup>(1)</sup>   | Bovine urine | Hexoestrol(HEX)          |                                      |                                    |                                    |
| BCR390RM <sup>(1)</sup> | Bovine urine | Dienoestrol(DE)          |                                      | (34)                               |                                    |
| BCR391 <sup>(1)</sup>   | Bovine urine | Hexoestrol(HEX)          |                                      | 13.3 ± 3.1                         |                                    |
|                         |              |                          | Content                              | Relevant below the certified value | Relevant above the certified value |
| BCR502 <sup>(2)</sup>   | Bovine urine | Clenbuterol              | < 0.1                                |                                    |                                    |
|                         |              | Salbutamol               | < 0.2                                |                                    |                                    |

| Cat. No.              | Description  | Substance   | Hormones in lyophilised bovine urine |     |     |
|-----------------------|--------------|-------------|--------------------------------------|-----|-----|
| BCR503 <sup>(2)</sup> | Bovine urine | Clenbuterol | 2.5                                  | 0.4 | 0.4 |
|                       |              | Salbutamol  | 2.3                                  | 0.6 | 0.9 |
| BCR504 <sup>(2)</sup> | Bovine urine | Clenbuterol | 6.0                                  | 0.5 | 0.7 |
|                       |              | Salbutamol  | 5.6                                  | 1.1 | 1.9 |

Availability: <sup>(1)</sup> Vial containing approximately 0.36 g lyophilised bovine urine corresponding to 5.20 g of fresh bovine urine.

<sup>(2)</sup> Vial containing approximately 0.31 g lyophilised bovine urine corresponding to 5.18 g of fresh bovine urine.

| Cat. No.                | Description  | Substance                | Hormones in lyophilised bovine urine | Mass concentration in reconstituted sample (µg/kg) |
|-------------------------|--------------|--------------------------|--------------------------------------|----------------------------------------------------|
| ERMBB386 <sup>(1)</sup> | Bovine urine | Diethylstilboestrol(DES) |                                      | < 0.6                                              |
|                         |              | Dienoestrol(DE)          |                                      | < 0.6                                              |
|                         |              | Hexoestrol(HEX)          |                                      | < 0.4                                              |
| ERMBB389 <sup>(2)</sup> | Bovine urine | Diethylstilboestrol(DES) |                                      | 1.1 ± 0.5                                          |
|                         |              | Dienoestrol(DE)          |                                      | 5.5 ± 1.4                                          |
|                         |              | Hexoestrol(HEX)          |                                      | 6.1 ± 0.9                                          |

Availability: <sup>(1)</sup> Vial containing approximately 0.36 g lyophilised bovine urine corresponding to 5.20 g of fresh bovine urine.

<sup>(2)</sup> Vial containing approximately 0.31 g lyophilised bovine urine corresponding to 5.18 g of fresh bovine urine.

| Cat. No.  | Description   | Substance           | Mass fraction in reconstituted sample (µg/kg)* |
|-----------|---------------|---------------------|------------------------------------------------|
| BCR648649 | Bovine liver  | Clenbuterol         | < 0.5                                          |
|           | Bovine liver  | Clenbuterol         | 1.2 ± 0.3                                      |
| BCR474    | Bovine liver  | 17 α-trenbolone     | < 0.5                                          |
| BCR475    | Bovine liver  | 17 α-trenbolone     | 7.6 ± 2.2                                      |
| BCR411    | Bovine muscle | Diethylstilboestrol | > 0.5                                          |
| BCR412    | Bovine muscle | Diethylstilboestrol | < 0.1                                          |
| BCR673    | Bovine eye    | Clenbuterol         | < 0.5                                          |
| BCR674    | Bovine eye    | Clenbuterol         | 9.4 ± 1.1                                      |

Availability: BCR648 and -649 are provided in units of 10 g lyophilised bovine liver in vials sealed under argon. BCR474 and -475 are sold as set and provided in brown glass vials in units of 2.8 g lyophilised liver corresponding to 10 g fresh liver. BCR411 and -412 are provided brown glass vials as lyophilised bovine muscle in units equivalent to about 5 g of fresh bovine tissue.

BCR673 and BCR674 are provided in brown glass vials containing about 0.1 g of material.

|                 | Cat. No. BCR444 Porcine muscle (blank)(µg/kg) | Cat. No. ERMBB130 Pork muscle (µg/kg) |
|-----------------|-----------------------------------------------|---------------------------------------|
| Chloramphenicol | < 0.2                                         | 0.230 ± 0.021                         |

Availability: BCR444 is provided in brown glass vials, ERMBB130 in an amber glass bottle, each containing about 7 g of lyophilised pork muscle tissue.

| Cat. No. | Description | Substance         | Mass fraction in reconstituted sample (mg/kg) |
|----------|-------------|-------------------|-----------------------------------------------|
| BCR695   | Pig liver   | Chlortetracycline | < 0.004                                       |
| BCR696   | Pig liver   | Chlortetracycline | 0.58 ± 0.11                                   |
| BCR697   | Pig muscle  | Chlortetracycline | < 0.006                                       |
| BCR706   | Pig kidney  | Chlortetracycline | < 0.005                                       |
| BCR707   | Pig kidney  | Chlortetracycline | 1.30 ± 0.20                                   |

Availability: These CRMs are provided in sealed glass vials containing lyophilised tissue equivalent to 5 g of fresh tissue.

| Substance     | Cat. No. BCR725 Salmon tissue (µg/kg) |   |     |
|---------------|---------------------------------------|---|-----|
| Flumequine    | 1170                                  | ± | 210 |
| Oxolinic acid | 600                                   | ± | 100 |

Availability: BCR725 is provided in amber glass vials containing 2.2 g of lyophilised salmon tissue material.

|                                                   | Cat. No. ERMBB124 Pork muscle |
|---------------------------------------------------|-------------------------------|
| Nitroimidazoles in the reconstituted material     | Mass fraction (µg/kg)         |
| Ronidazole (RNZ)                                  | 2.09 ± 0.25                   |
| Metronidazole (MNZ)                               | 1.93 ± 0.15                   |
| 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI) | 0.69 ± 0.09                   |
| Hydroxymetronidazole (MNZOH)                      | 6.2 ± 0.9                     |
| Hydroxyipronidazole (IPZOH)                       | 1.67 ± 0.12                   |
| Dimetridazole (DMZ)                               | < 0.25                        |

Availability: ERMBB124 is provided in amber glass bottles containing 10 g of lyophilised pork muscle tissue.

## 2.2.7 CERTIFIED FOR IDENTITY

### (Cat. No. BCR599) Ewes'/Goats' Curd

BCR599 consists of a set of two freeze dried curd materials made from a mixture of ewes' and goats' milk, intended to detect adulteration by cows' milk in cheeses made from ewes' milk, goats' milk and mixtures thereof, according to the reference method described in Commission Regulation (EC) No. 1081/96. The 0 % material is not adulterated, the 1 % material is adulterated milk 1 % of cows' milk.

Availability: BCR599 is available as a set of two brown glass vials containing each about 15 g of lyophilised curd powder under Argon atmosphere.

### (Cat. No. IRMMAD482) Calibration kit for ruminant detection by PCR

The calibration kit for ruminant detection by PCR is not a certified reference material because the copy number concentration values have only been determined in a single laboratory and the material have not yet been tested for long term stability. Consequently, the DNA copy number concentrations are provided as indicative values and not as certified values.

The materials are intended for the determination of a cut-off value to discriminate positive samples (containing the ruminant target sequence) from negative samples by quantitative PCR. As any reference material (RM), the materials can also be used for control charts or precision studies.

|                    | Copy number concentration of the plasmid |
|--------------------|------------------------------------------|
|                    | Indicative value [cp/µL]                 |
| <b>IRMM AD482a</b> | 128                                      |
| <b>IRMM AD482b</b> | 32                                       |
| <b>IRMM AD482c</b> | 8                                        |

Availability: IRMMAD482 consists of a kit of three different vials containing plasmid solutions bearing a ruminant DNA target with indicative copy number concentrations of 128 cp/µL, 32 cp/µL and 8 cp/µL. The vials contain at least 1 mL of plasmid solution with Tris-EDTA buffer and maize genomic DNA at a concentration of 12 ng/µL.

## 2.2.8 OTHERS

| Substance  | Cat. No. ERMBD273 Toasted bread |   |    |
|------------|---------------------------------|---|----|
|            | Mass fraction (ng/g)            |   |    |
| Acrylamide | 425                             | ± | 29 |

Availability: ERMBD273 is available in a brown glass vial containing about 30 g of toasted bread powder.

## 3 MATERIALS RELATED TO CLINICAL CHEMISTRY

### 3.1 PURE STANDARDS AND SYNTHETIC MATERIALS

| Cat. No. | Description                             | Purity (%) | Cat. No. | Description                             | Purity (%) |
|----------|-----------------------------------------|------------|----------|-----------------------------------------|------------|
| BCR546   | Formaldehyde 2,4-dinitrophenylhydrazone | > 99.3     | BCR547   | Acetaldehyde 2,4-dinitrophenylhydrazone | 98.3 ± 0.5 |

| Cat. No. | Description                         | Purity (%) |
|----------|-------------------------------------|------------|
| BCR548   | Acrolein 2,4-dinitrophenylhydrazone | > 97.9     |
| BCR549   | Acetone 2,4-dinitrophenylhydrazone  | > 99.6     |

| Cat. No. | Description                               | Purity (%) |
|----------|-------------------------------------------|------------|
| BCR550   | Glutaraldehyde 2,4-dinitrophenylhydrazone | > 98.1     |

Availability: Approximately 10 mg of crystals in glass vials.

| Compounds                               | Cat. No. BCR551 Acetonitrile solution | Cat. No. BCR552 Acetonitrile solution |
|-----------------------------------------|---------------------------------------|---------------------------------------|
|                                         | Mass concentration (µg/mL)            | (blank) (µg/mL)                       |
| Formaldehyde 2,4-Dinitrophenylhydrazone | 2.94 ± 0.05                           | < 0.08                                |
| Acetaldehyde 2,4-dinitrophenylhydrazone | 4.89 ± 0.07                           | < 0.05                                |
| Acrolein 2,4-dinitrophenylhydrazone     | 0.483 ± 0.011                         | < 0.04                                |
| Acetone 2,4-dinitrophenylhydrazone      | 4.96 ± 0.07                           | < 0.05                                |

Availability: Set BCR5512 consists of 4 samples of BCR551 and 1 sample of BCR552.

| Compounds                                                      | Cat. No. BCR553 Glass fibre filters<br>Spiked mass per filter (expressed as µg formaldehyde) | Cat. No. BCR554 Glass fibre filters<br>Mass per filter (blank) (expressed as µg formaldehyde) |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Formaldehyde 2,4-dinitrophenylhydrazone on glass fibre filters | 4.96 ± 0.06                                                                                  | < 0.1                                                                                         |

Availability: Set BCR5534 consists of 2 samples of BCR553 and 1 sample of BCR554.

| Substance             | Cat. No. BCR555<br>Chlorinated hydrocarbons on Tenax (ng) |
|-----------------------|-----------------------------------------------------------|
| Dichloromethane       | 320 ± 40                                                  |
| 1,1,1-Trichloroethane | 370 ± 40                                                  |
| Trichloroethylene     | 390 ± 40                                                  |

| Substance         | Cat. No. BCR555<br>Chlorinated hydrocarbons on Tenax (ng) |
|-------------------|-----------------------------------------------------------|
| Perchloroethylene | 327 ± 17                                                  |
| Toluene           | 57 ± 7                                                    |

Availability: Stainless steel tube of 9.0 cm length and 0.25 inches outer diameter containing a single section of 250 mg TENAX GR, charged with 4 chlorinated hydrocarbons and toluene at the levels shown above.

| Cat. No. | Description                         | Latex spheres Parameters of the calibration line |
|----------|-------------------------------------|--------------------------------------------------|
| BCR165   | Nominal 2 µm latex (0.02 % solids)  | 2.223 ± 0.013                                    |
| BCR166   | Nominal 4.8 µm latex (0.2 % solids) | 4.821 ± 0.019                                    |
| BCR167   | Nominal 9.6 µm latex (1.4 % solids) | 9.475 ± 0.018                                    |

Availability: Vials containing 2 mL of an aqueous suspension of latex spheres.

| Cat. No. | Thyroxine (T <sub>4</sub> ) | 3,3'5-triiodothyronine (T <sub>3</sub> ) |
|----------|-----------------------------|------------------------------------------|
| IRMM468  | 98.6 ± 0.7                  | (0.51 ± 0.17)                            |
| IRMM469  | (1.50 ± 0.12)               | 97.1 ± 0.7                               |

Values in brackets are not certified.

Availability: The material consists of an off-white crystalline powder in an amber glass vial sealed under N<sub>2</sub> atmosphere. Each vial contains about 100 mg of the powder.

## 3.2 MATRIX MATERIALS

### 3.2.1 CERTIFIED FOR THE HORMONE CONTENT

#### Cat. No. ERMDA451- Cortisol reference panel of fresh frozen human sera

| Serum No. | Certified value nmol/L | Uncertainty nmol/L |
|-----------|------------------------|--------------------|
| 1         | 361                    | 14                 |
| 2         | 432                    | 17                 |
| 3         | 288                    | 11                 |
| 4         | 152                    | 6                  |
| 5         | 329                    | 13                 |

| Serum No. | Certified value nmol/L | Uncertainty nmol/L |
|-----------|------------------------|--------------------|
| 6         | 278                    | 11                 |
| 7         | 515                    | 20                 |
| 8         | 163                    | 7                  |
| 9         | 287                    | 11                 |
| 10        | 230                    | 9                  |

| Serum No. | Certified value nmol/L | Uncertainty nmol/L |
|-----------|------------------------|--------------------|
| 11        | 334                    | 13                 |
| 12        | 261                    | 10                 |
| 13        | 430                    | 17                 |
| 14        | 626                    | 24                 |
| 15        | 246                    | 10                 |
| 16        | 211                    | 8                  |
| 17        | 366                    | 14                 |
| 18        | 146                    | 6                  |
| 19        | 166                    | 7                  |
| 20        | 83                     | 4                  |
| 21        | 89                     | 4                  |
| 22        | 180                    | 7                  |

| Serum No. | Certified value nmol/L | Uncertainty nmol/L |
|-----------|------------------------|--------------------|
| 23        | 387                    | 15                 |
| 24        | 384                    | 15                 |
| 25        | 315                    | 12                 |
| 26        | 215                    | 9                  |
| 27        | 497                    | 19                 |
| 28        | 299                    | 12                 |
| 29        | 265                    | 11                 |
| 30        | 114                    | 5                  |
| 31        | 764                    | 29                 |
| 32        | 623                    | 24                 |
| 33        | 264                    | 10                 |
| 34        | 390                    | 15                 |

Availability: As panel of 34 x 1 mL serum in screw capped cryo-vials.

| Cortisol in human serum (concentration in the reconstituted material <sup>1)</sup> ) |                |              |
|--------------------------------------------------------------------------------------|----------------|--------------|
| Cat. No.                                                                             | ( $\mu$ g/L)   | (nmol/L)     |
| ERMDA192                                                                             | 98.8 $\pm$ 2.0 | 273 $\pm$ 6  |
| ERMDA193                                                                             | 277 $\pm$ 5    | 763 $\pm$ 14 |

Availability: In units of lyophilised material of a 1.25 mL portion of serum kept under nitrogen in sealed glass ampoules.

<sup>1)</sup>The sample is to be reconstituted with (1.25  $\pm$  0.01) mL of distilled water.

| Progesterone in human serum (concentration in the reconstituted material <sup>1)</sup> ) |                 |                  |
|------------------------------------------------------------------------------------------|-----------------|------------------|
| Cat. No.                                                                                 | ( $\mu$ g/L)    | (nmol/L)         |
| BCR348R                                                                                  | 8.5 $\pm$ 0.4   | 26.9 $\pm$ 1.2   |
| ERMDA347                                                                                 | 3.19 $\pm$ 0.07 | 10.13 $\pm$ 0.21 |

Availability: In units of lyophilised material of a 1 mL portion of serum kept under nitrogen in sealed glass ampoules.

<sup>1)</sup>The sample is to be reconstituted with (1.0  $\pm$  0.01) mL of distilled water.

| Cat. No.             | 17 $\beta$ -Estradiol in human serum (concentration in the reconstituted material) Amount-of-substance concentration (nmol/L) |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| BCR576 <sup>1)</sup> | 0.114 $\pm$ 0.005                                                                                                             |
| BCR577 <sup>2)</sup> | 0.689 $\pm$ 0.032                                                                                                             |
| BCR578 <sup>2)</sup> | 1.34 $\pm$ 0.07                                                                                                               |

Availability: BCR576, -577, -578 are lyophilised material of a 5 mL (BCR576) or 1 mL (BCR577 and BCR578) portion of serum kept under nitrogen in sealed glass ampoules.

<sup>1)</sup>The sample is to be reconstituted with (5.00  $\pm$  0.05) mL of distilled water.

<sup>2)</sup>The sample is to be reconstituted with (1.00  $\pm$  0.01) mL of distilled water.

### 3.2.2 CERTIFIED FOR THE TOTAL ELEMENT CONTENT AND OTHER PROPERTIES

| Cat. No. | Description              | Substance           | Metal concentrations in the reconstituted material <sup>1)</sup> ( $\mu$ g/L) |                  |
|----------|--------------------------|---------------------|-------------------------------------------------------------------------------|------------------|
| ERMCE196 | Lyophilised bovine blood | Pb Cd <sup>2)</sup> | 772 $\pm$ 11                                                                  | 12.33 $\pm$ 0.20 |
| BCR634   | Lyophilised human blood  | Pb Cd               | 46 $\pm$ 5                                                                    | 1.4 $\pm$ 0.4    |
| BCR635   | Lyophilised human blood  | Pb Cd               | 210 $\pm$ 24                                                                  | 6.6 $\pm$ 0.6    |
| BCR636   | Lyophilised human blood  | Pb Cd               | 0.52 . 10 <sup>3</sup> $\pm$ 0.05 . 10 <sup>3</sup>                           | 11.6 $\pm$ 0.6   |

Availability: In units of lyophilised material equivalent to about 5.75 mL of bovine blood with additives kept under nitrogen in rubber stoppered vials. BCR634, BCR635 and BCR636 are available in lyophilised form in brown glass vials, containing approximately 0.6 g dry matter equivalent to 3.0 mL of fresh whole blood.

<sup>1)</sup>The sample is to be reconstituted with (5.00  $\pm$  0.01) mL water.

<sup>2)</sup>Recertified by IRMM.

| Cat. No. | Description             | Substance | Element concentration in the reconstituted material <sup>1)</sup> (mmol/L) |
|----------|-------------------------|-----------|----------------------------------------------------------------------------|
| BCR304   | Lyophilised human serum | Ca        | 2.201 ± 0.019                                                              |
|          |                         | Li        | 0.985 ± 0.029                                                              |
|          |                         | Mg        | 1.85 ± 0.03                                                                |

Availability: In units of lyophilised material equivalent to about 5.3 mL of human serum kept under vacuum in rubber stoppered vials.

<sup>1)</sup>The sample is to be reconstituted with (5.00 ± 0.01) mL bi-distilled water.

| Cat. No. | Description | Substance | Metal concentrations (µg/L) |
|----------|-------------|-----------|-----------------------------|
| BCR637   | Human serum | Al        | 12.5 ± 3.081 ± 7            |
|          |             | Se        | 1110 ± 220                  |
|          |             | Zn        |                             |
| BCR638   | Human serum | Al        | 55 ± 7                      |
|          |             | Se        | 104 ± 7                     |
|          |             | Zn        | 1430 ± 210                  |
| BCR638   | Human serum | Al        | 194 ± 14                    |
|          |             | Se        | 133 ± 12                    |
|          |             | Zn        | 2360 ± 140                  |

Availability: Supplied in frozen form in white plastic vials containing approximately 4.5 mL serum.

| Substance | ERMDB001 Human hair (mg/kg) |
|-----------|-----------------------------|
| As        | 0.044 ± 0.006               |
| Cd        | 0.125 ± 0.007               |
| Cu        | 33 ± 4                      |
| Hg        | 0.365 ± 0.028               |

| Substance | ERMDB001 Human hair (mg/kg) |
|-----------|-----------------------------|
| Pb        | 2.14 ± 0.20                 |
| Se        | 3.24 ± 0.24                 |
| Zn        | 209 ± 12                    |

Availability: Supplied in amber glass bottle, provided in aluminium sachet, and contains a minimum amount of 3.5 g of a human hair homogeneous powder

### 3.2.3 CERTIFIED FOR PROTEIN CONTENT

| Cat. No. | Description                          | Mass concentration in the reconstituted material <sup>1)</sup> (g/L) |
|----------|--------------------------------------|----------------------------------------------------------------------|
| BCR393   | Lyophilised Apo A I from human serum | 1.06 ± 0.05                                                          |

Availability: In units of lyophilised material equivalent to about 1.5 mL of Apolipoprotein solution in sealed glass ampoules under nitrogen.

<sup>1)</sup>The sample must be reconstituted with 1.0 mL of phosphate buffer.

| Cat. No. | Description              | Mass concentration in the reconstituted material <sup>1)</sup> (g/L) |
|----------|--------------------------|----------------------------------------------------------------------|
| BCR457   | Human Thyroglobulin (Tg) | 0.324 ± 0.018                                                        |

Availability: In units of lyophilised material in sealed glass ampoules under nitrogen.

<sup>1)</sup>The sample must be reconstituted with 1.0 mL of distilled water.

| Cat. No. | Description                      | Protein mass per ampoule <sup>1)</sup> (µg) |
|----------|----------------------------------|---------------------------------------------|
| BCR486   | Purified alphafoetoprotein (AFP) | 100 ± 9                                     |

Availability: BCR486 is provided in sealed glass ampoules. Each sample is in lyophilised form and it contains purified AFP without additives. The protein mass per ampoule is equivalent to (100 ± 9) µg when the material is reconstituted with 1.0 mL phosphate buffer according to the specified procedure.

<sup>1)</sup>Carbohydrate mass of the molecule is not included.

| Cat. No. | Description                                             | Protein mass/ampoule |
|----------|---------------------------------------------------------|----------------------|
| BCR613   | Prostate specific antigen in the reconstituted material | 71 ± 7µg             |

Availability: Lyophilised PSA in sealed glass ampoules kept under argon gas.

| Cat. No. | Description                                                    | HbA <sub>1c</sub> /Hb <sub>T</sub> in reconstituted material (%) |
|----------|----------------------------------------------------------------|------------------------------------------------------------------|
| BCR405RM | Glycated haemoglobin (HbA <sub>1c</sub> ) in human haemolysate | (6.29 ± 0.18)                                                    |

Value in brackets is not certified.

Availability: Sealed glass ampoules of lyophilised material equivalent to about 0.5 mL of a solution of haemolysate of human erythrocytes kept under carbonmonoxide.

<sup>1)</sup>Sample to be reconstituted with 1 mL of deionised water and diluted with appropriate haemolyzing reagent, taking into account that the total haemoglobin (Fe<sub>4</sub>) concentration is about 0.23 mmol/L (15 g/L).

| Cat. No. ERMDA470kIFCC Human Serum Proteins |                                        | Cat. No. ERMDA470kIFCC Human Serum Proteins |                                        |
|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|
| Description                                 | Mass concentration <sup>1)</sup> (g/L) | Description                                 | Mass concentration <sup>1)</sup> (g/L) |
| α <sub>2</sub> macroglobulin (A2M)          | 1.43 ± 0.06                            | Haptoglobin (HPT)                           | 0.889 ± 0.021                          |
| α <sub>1</sub> acid glycoprotein (AAG)      | 0.617 ± 0.013                          | Immunoglobulin A (IgA)                      | 1.80 ± 0.05                            |
| α <sub>1</sub> antitrypsin (AAT)            | 1.12 ± 0.03                            | Immunoglobulin G (IgG)                      | 9.17 ± 0.18                            |
| Albumin (ALB)                               | 37.2 ± 1.2                             | Immunoglobulin M (IgM)                      | 0.723 ± 0.027                          |
| Complement 3c (C3c)                         | 1.00 ± 0.04                            | Transferrin (TRF)                           | 2.36 ± 0.08                            |
| Complement 4 (C4)                           | 0.162 ± 0.007                          | Transthyretin (TTR)                         | 0.220 ± 0.018                          |

Availability: Glass bottle containing lyophilised materials equivalent to about 1 mL of serum with additives kept under nitrogen.

<sup>1)</sup>Sample to be reconstituted with (1.00 ± 0.01) g water.

| Cat. No.     | Description | Mass concentration (mg/L) |
|--------------|-------------|---------------------------|
| ERMDA471IFCC | Cystatin C  | 5.48 ± 0.15               |

Availability: Glass vial containing lyophilised human serum spiked with cystatin C.

| Cat. No.     | Description              | Mass concentration (mg/L) |
|--------------|--------------------------|---------------------------|
| ERMDA474IFCC | C-reactive protein (CRP) | 41.2 ± 2.5                |

Availability: Glass ampoule containing at least 1 mL processed human serum spiked with CRP.

| Cat. No. | Description                                      | Absorbance at 540 nm and 10.00 mm pathlength | Mass concentration (mg/L) | Substance concentration (µmol/L) |
|----------|--------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------|
| BCR522   | Haemoglobincyanide (HiCN) in bovine blood lysate | 0.5457 ± 0.0009                              | 800.3 ± 1.3               | 49.61 ± 0.08                     |

Availability: Bovine blood lysate in sealed brown glass ampoules (10 mL) equivalent to about 800.3 mg/L of haemoglobincyanide.

| Cat. No. | Description               | Amount-of-substance concentration of creatinine (µmol/L) |
|----------|---------------------------|----------------------------------------------------------|
| BCR573   | Creatinine in human serum | 68.7 ± 1.4                                               |
| BCR574   | Creatinine in human serum | 105.0 ± 1.3                                              |
| BCR575   | Creatinine in human serum | 404.1 ± 7.1                                              |

Availability: BCR573, -574, -575 are the lyophilised form of approximately 1 mL portion of serum, with no additives. The mass of the lyophilised material contained in the ampoule is about 0.09 g.

### Cat. No. BCR573i - Set of creatinine interfering substances

Availability: Consists of three vials with lyophilised solutions

- 0.025 mg calcium dobesilate / 1.2 mg cefoxitin;
- 0.044 mg sodium pyruvate;
- 0.108 mg bilirubin ditaurate.

| Cat. No.    | Description                           | Amount-of-substance fraction (mmol/mol) |       |
|-------------|---------------------------------------|-----------------------------------------|-------|
| IRMMIFCC467 | Haemoglobin isolated from whole blood | HbA0/(HbA1c + HbA0)                     | > 976 |

Availability: Provided in vials containing approximately 39 mg a deep frozen buffered solution.

### 3.2.4 CERTIFIED FOR CATALYTIC ACTIVITY

|              | Description                                                                   | Catalytic concentration in reconstituted material |   |        | Certified value |         |
|--------------|-------------------------------------------------------------------------------|---------------------------------------------------|---|--------|-----------------|---------|
|              |                                                                               | U/L                                               |   | μkat/L |                 |         |
| BCR410       | Prostatic acid phosphatase highly purified, from human prostate <sup>2)</sup> | 28.0                                              | ± | 0.7    | 0.466           | ± 0.012 |
| BCR647       | Human adenosine deaminase (ADA1), from human erythrocytes <sup>2)</sup>       |                                                   |   |        | 2.55            | ± 0.09  |
| BCR693       | Human pancreatic lipase from pancreatic juice <sup>4)</sup>                   |                                                   |   |        | 28.9            | ± 1.2   |
| BCR694       | Human pancreatic lipase (recombinant) <sup>4)</sup>                           |                                                   |   |        | 17.4            | ± 1.0   |
| ERMAD452     | γ-Glutamyltransferase partially purified, from pig kidney <sup>3)</sup>       | 114.1                                             | ± | 2.4    | 1.90            | ± 0.04  |
| ERMAD454     | Alanine aminotransferase partially purified, from pig heart <sup>13)</sup>    | 186                                               | ± | 4      | 3.09            | ± 0.07  |
| ERMAD455     | Creatine kinase CK-MB from human heart <sup>3)</sup>                          | 101                                               | ± | 4      | 1.68            | ± 0.07  |
| IRMMIFCC456  | Human pancreatic α-Amylase <sup>3)</sup>                                      |                                                   |   |        | 9.1             | ± 0.3   |
| ERMAD457IFCC | Aspartate Transaminase (AST)                                                  | 104.6                                             | ± | 2.7    | 1.74            | ± 0.05  |

Availability: Sealed glass ampoules of lyophilised material equivalent to about 1 mL of a solution of enzyme stabilized by incorporation in serum albumin matrix of human (BCR410) or bovine (ERMAD452, ERMAD454 and ERMAD457IFCC) origin kept under dry nitrogen. BCR647 has been stabilised by incorporation in a matrix of 50 mmol/L Tris/HCl buffer 9pH=7.4) and human serum albumin (30 g/L). ERMAD455 and IRMM IFCC456 are provided in sealed ampoules or vials filled with dry nitrogen. Samples are in lyophilised form and equivalent to about 1 mL of a solution of purified enzyme. BCR693 and BCR694 are provided in ampoules of lyophilised material equivalent to about 1 mL of stabilised enzyme.

<sup>1)</sup>According to IFCC recommended method at 30 °C.

<sup>2)</sup>According to method specified in report.

<sup>3)</sup>According to IFCC recommended method at 37 °C.

<sup>4)</sup>According to method described in certification report at 37 °C.

### 3.2.5 CERTIFIED FOR DNA SEQUENCE

| SET OF PLASMID SOLUTIONS                 |                                              |                      |
|------------------------------------------|----------------------------------------------|----------------------|
|                                          | Number of specific DNA fragments per plasmid |                      |
|                                          | Certified value                              | Uncertainty          |
| BCR-ABL b3a2 transcript                  | 1                                            | negligible           |
| BCR transcript                           | 1                                            | negligible           |
| GUSB transcript                          | 1                                            | negligible           |
| Copy number concentration of the plasmid |                                              |                      |
|                                          | Certified value [cp/μL]                      | Uncertainty [cp/μL]  |
| ERMAD623a                                | 1.08×10 <sup>6</sup>                         | 0.13×10 <sup>6</sup> |
| ERMAD623b                                | 1.08×10 <sup>5</sup>                         | 0.11×10 <sup>5</sup> |
| ERMAD623c                                | 1.03×10 <sup>4</sup>                         | 0.10×10 <sup>4</sup> |
| ERMAD623d                                | 1.02×10 <sup>3</sup>                         | 0.09×10 <sup>3</sup> |
| ERMAD623e                                | 1.04×10 <sup>2</sup>                         | 0.10×10 <sup>2</sup> |
| ERMAD623f                                | 10.0                                         | 1.5                  |

Availability: ERMAD623 is a set of six plasmid solutions (a-f). Each of six vials contains approximately 600 μL of plasmid solution.

### 3.2.6 OTHERS

| Cat. No. | Description                       | Parameters of the calibration line                       |
|----------|-----------------------------------|----------------------------------------------------------|
| ERMAD149 | Lyophilised rabbit thromboplastin | Slope 1.257 $\pm$ 0.013<br>Intercept – 0.242 $\pm$ 0.019 |

Availability: ERMAD149 in sealed glass ampoules containing the lyophilised form of a 0.5 mL aliquot of the extract of rabbit brain tissue, without calcium ion added.

|                       | Cat. No. BCR665 Asbestos fibres in lung tissue (Number of fibres of more than 1 $\mu\text{m}$ in length in million per g dry tissue) | Cat. No. BCR666 Asbestos fibres in lung tissue (Number of fibres of more than 1 $\mu\text{m}$ in length in million per g dry tissue) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Amosite + crocidolite | 49 $\pm$ 16                                                                                                                          | 2.3 $\pm$ 0.9                                                                                                                        |
| Anthophyllite         | 1.8 $\pm$ 0.9                                                                                                                        | 5.1 $\pm$ 1.5                                                                                                                        |

Availability: Sealed vials with 100 mg of lung tissue.

|                                                                   | Cat. No. IRMM435<br>Pharmaceutical glass containers Alkali leaching and release |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Volume of titration solution 0.01 mol/L HCl per 50 mL of leachate | 0.38 $\pm$ 0.04mL                                                               |
| Sodium release per volume of leachate                             | 1.41 $\pm$ 0.14mg/L                                                             |
| Release of Na <sub>2</sub> O per volume of leachate               | 1.91 $\pm$ 0.19mg/L                                                             |

Availability: Each unit of IRMM435 consists of 20 vials of 18.9 mL brimful capacity, made of a semi-durable type of glass, which screw caps.

## 4 MATERIALS CERTIFIED FOR PHYSICAL PROPERTIES

### 4.1 CERTIFIED FOR THERMAL PROPERTIES

#### Cat. No. IRMM440 (A-D) - Resin bonded glass fibre board

The certified thermal conductivity between – 10 °C and + 50 °C is given by

$$\lambda [\text{W}/(\text{m.K})] = 0.029\ 394\ 9 + 0.000\ 106\ 0 \times T [\text{°C}] + 2.047 \times 10^{-7} \times T^2 [\text{°C}]^2$$

This equation is valid for a sample of the reference material within the density range [64 kg/m<sup>3</sup> - 78 kg/m<sup>3</sup>].

The uncertainty of the certified thermal conductivity is \* 0.000 28 W/(m.K) at the 95 % confidence level over the range [- 10 °C / + 50 °C].

Availability: Boards which can be cut to: (300 x 300 x 35) mm, (500 x 500 x 35) mm, (600 x 600 x 35) mm, (1000 x 1000 x 35) mm.

#### Cat. No. BCR724 (A-E) - Glass-ceramic

The certified thermal diffusivity between 298 K and 1025 K is given by  $a [\text{m}^2/\text{s}] = 4.406 - 1.351 \cdot 10^{-2} \cdot T + 2.133 \cdot 10^{-5} \cdot T^2 - 1.541 \cdot 10^{-8} \cdot T^3 + 4.147 \cdot 10^{-12} \cdot T^4$

The uncertainty of the certified thermal diffusivity is + 6.1 [ % ] at the 95 % confidence level over the range from 298 K to 1025 K.

The certified thermal conductivity between 298 K and 1025 K is given by  $\lambda [\text{W}/(\text{m.K})] = 2.332 + 515.1 / T$

The uncertainty of the certified thermal conductivity is + 6.5 [ % ] at the 95 % confidence level over the range from 298 K to 1025 K.

Availability: Glass-ceramic cylinders in different shapes (BCR724A: diameter = 13.0 mm, height > 18 mm; BCR724B: diameter = 13.9 mm, height > 21 mm; BCR724C: diameter = 25.9 mm, height > 22 mm; BCR724D: diameter = 26.9 mm, height > 22 mm; BCR724E: diameter = 50.7 mm, height > 25 mm).

| Substance                           | Cat. No. ERMEF411 Hard coal | Cat. No. ERMEF412 Brown coal | Cat. No. ERMEF413 Furnace coke |
|-------------------------------------|-----------------------------|------------------------------|--------------------------------|
| Gross calorific value (GCV) (MJ/kg) | 29.0 $\pm$ 0.4              | 26.02 $\pm$ 0.22             | 29.5 $\pm$ 0.4                 |
| Net calorific value (NCV) (MJ/kg)   | 28.0 $\pm$ 0.4              | 24.98 $\pm$ 0.25             | 29.4 $\pm$ 0.5                 |
| Volatile matter (g/100 g)           | 38.1 $\pm$ 1.0              | 50.1 $\pm$ 0.7               |                                |
| Ash (g/100 g)                       | 8.3 $\pm$ 0.7               | 4.11 $\pm$ 0.23              |                                |
| C (g/100 g)                         | 71.4 $\pm$ 1.0              | 66.2 $\pm$ 0.7               | 87.8 $\pm$ 1.9                 |
| Ca (g/kg)                           |                             | 9.8 $\pm$ 0.4                | 2.92 $\pm$ 0.22                |
| Cd (mg/kg)                          |                             | (0.012 $\pm$ 0.004)          |                                |
| Cl (mg/kg)                          | 99 $\pm$ 19                 |                              | (350 $\pm$ 130)                |
| Co (mg/kg)                          | (3.5 $\pm$ 0.8)             |                              |                                |
| Cu (mg/kg)                          |                             | (0.68 $\pm$ 0.22)            |                                |
| H (g/100 g)                         | 4.80 $\pm$ 0.14             | 4.88 $\pm$ 0.15              |                                |
| Hg (mg/kg)                          | (0.079 $\pm$ 0.015)         | 0.071 $\pm$ 0.011            |                                |

| Substance   | Cat. No. ERMEF411 Hard coal | Cat. No. ERMEF412 Brown coal | Cat. No. ERMEF413 Furnace coke |
|-------------|-----------------------------|------------------------------|--------------------------------|
| K (mg/kg)   |                             | 229 $\pm$ 18                 |                                |
| Mg (g/kg)   |                             | (3.73 $\pm$ 0.16)            | (0.00123 $\pm$ 0.00019)        |
| Mn (mg/kg)  |                             | 48.6 $\pm$ 1.9               |                                |
| N (g/100 g) | 1.43 $\pm$ 0.10             | 0.74 $\pm$ 0.06              | 1.10 $\pm$ 0.07                |
| Na (g/kg)   |                             | 2.20 $\pm$ 0.12              | 0.64 $\pm$ 0.07                |
| Pb (mg/kg)  |                             | (0.25 $\pm$ 0.05)            | (8.41 $\pm$ 1.6)               |
| S (g/100 g) | 0.598 $\pm$ 0.017           | 0.360 $\pm$ 0.023            | 0.58 $\pm$ 0.12                |
| Sb (mg/kg)  | (1.5 $\pm$ 0.4)             | (0.024 $\pm$ 0.004)          |                                |
| Se (mg/kg)  | 5.1 $\pm$ 1.0               | 0.96 $\pm$ 0.14              | 1.33 $\pm$ 0.26                |
| Tl (mg/kg)  | (0.24 $\pm$ 0.07)           |                              |                                |
| V (mg/kg)   | (22 $\pm$ 7)                | 0.57 $\pm$ 0.04              |                                |
| Zn (mg/kg)  | (13 $\pm$ 4)                | (0.99 $\pm$ 0.18)            | 16.0 $\pm$ 2.5                 |

Values in brackets are not certified.

Availability: ERMEF411, ERMEF412 and ERMEF413 are available in units of about 50 g in aluminium-laminated sachets.

## 4.2 CERTIFIED FOR MECHANICAL PROPERTIES

### Cat. No. BCR116 - Shear testing of powders

The flow of powders or granulated materials under the force of gravity affects the design and operation of silos used for their bulk storage. The European Federation of Chemical Engineering (EFCE) therefore developed a test method, based on the Jenike Shear Cell, to determine the shear strength of powders under different compaction and loading conditions. The complexity of this method is such that errors due to poor technique can easily arise. A reference material has therefore been produced with which laboratories can verify both their equipment and experimental technique.

Essentially the EFCE method consists of using a known load to compact a powder sample into a cylindrical Jenike Cell composed of two metal rings one upon the other. Having reached critical compaction of the powder, the steady state force necessary to displace the upper ring horizontally with respect to the lower one is determined with the compaction load still applied. Having established steady state shear the normal load on the powder is then reduced and the horizontal force necessary to continue to shear the powder is determined. It is this variation of the shear force as a function of the reduced normal load for a given compaction load which characterizes the powder.

The reference material consists of 3 kg of limestone powder packed in a polyethylene jar. It is accompanied by a certificate giving shear stress as a function of normal applied stress for four different powder compaction stresses.

### Cat. No. BCR425 - Creep

Creep is the progressive deformation of a material under load. Metallic materials are usually tested at elevated temperatures for periods of 1 000 to 100 000 hours by surrounding them with a suitable constant temperature furnace. The need to operate under such conditions gives rise to problems of alignment, strain measurement, temperature measurement etc. which can result in considerable differences in results between laboratories.

BCR425 was therefore developed to allow laboratories to validate their creep testing rigs and procedures as a whole within a reasonable time (500 to 600 hours) using a material whose properties are sensitive to test conditions.

The test piece is delivered in the form of a bar of 14 mm diameter and 500 mm length which must be machined by the laboratory to the required shape and size.

At a test temperature of 600 °C, using an applied stress of 160 MPa the certified properties are as follows:

|                               |                                         |
|-------------------------------|-----------------------------------------|
| Creep rate at 400 hours of    | (72 $\pm$ 5) $\times 10^{-6}$ h $^{-1}$ |
| Time to a creep strain of 2 % | (278 $\pm$ 16) h                        |
| Time to a creep strain of 4 % | (557 $\pm$ 30) h                        |

### Cat. No. BCR661B - Nimonic 75 for ambient temperature tensile properties

| Property                             | Certified value   | Property                                 | Certified value    |
|--------------------------------------|-------------------|------------------------------------------|--------------------|
| 0.2 % proof stress R <sub>p0.2</sub> | (300 $\pm$ 8) MPa | Ultimate tensile strength R <sub>m</sub> | (750 $\pm$ 14) MPa |
| 0.5 % proof stress R <sub>p0.5</sub> | (318 $\pm$ 7) MPa | Elongation to fracture A                 | (40.9 $\pm$ 0.9) % |

| Property            | Certified value |
|---------------------|-----------------|
| Reduction in area Z | (60 $\pm$ 4) %  |

Availability: BCR661B can be supplied in 3 bars of 150 mm long and diameter 14 m or as 1 bar of 500 m long, sufficient for the manufacture of three test-pieces.

### Cat No. BCR692 - Scratch testing

| Failure event                                                                                                                                                                                                                                                        | Critical load       |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|
|                                                                                                                                                                                                                                                                      | Certified value (N) | Uncertainty (N) |
| Forward chevron cracks at the borders of the scratch track.<br>( $L_c_1$ shall be taken at the closest end of the event to the scratch track start).                                                                                                                 | ( $L_c_1$ ) 13.6    | 1.8             |
| Forward chevron cracks at the borders of the scratch track, with local interfacial spallation or with gross interfacial spallation. ( $L_c_2$ shall be taken at the failure event that occurs first and at the closest end of the event to the scratch track start). | ( $L_c_2$ ) 17.0    | 2.1             |
| Gross interfacial shell-shaped spallation.<br>( $L_c_3$ shall be taken at the first point where the substrate can be seen at the <u>centre</u> of the track in a crescent that goes completely through the track).                                                   | ( $L_c_3$ ) 28      | 2.9             |

Availability: The reference samples are (30x30x5) mm steel coupons coated with a diamond-like carbon coating (DLC) applied by plasma-assisted chemical vapour deposition. The coupons are distributed in a reusable plastic box containing desiccant.

### 4.3 CERTIFIED FOR MORPHOLOGICAL PROPERTIES

| Particle size distributions |                |                    |                              |               |
|-----------------------------|----------------|--------------------|------------------------------|---------------|
| Cat. No.                    | Form of Quartz | Certified Property | Size Range ( $\mu\text{m}$ ) | Unit Size (g) |
| BCR066                      | Powder         | Stokes' diameter   | 0.35-3.50                    | 10            |
| BCR067                      | Powder         | Stokes' diameter   | 2.40-32.00                   | 10            |
| BCR068                      | Sand           | Volume diameter    | 160.0-630.0                  | 100           |
| BCR069                      | Powder         | Stokes' diameter   | 14.0-90.0                    | 10            |
| BCR070                      | Powder         | Stokes' diameter   | 1.20-20.00                   | 10            |

| Particle size distributions |                |                    |                              |               |
|-----------------------------|----------------|--------------------|------------------------------|---------------|
| Cat. No.                    | Form of Quartz | Certified Property | Size Range ( $\mu\text{m}$ ) | Unit Size (g) |
| BCR130                      | Powder         | Volume diameter    | 50-220                       | 50            |
| BCR131                      | Powder         | Volume diameter    | 480-1800                     | 200           |
| BCR132                      | Gravel         | Volume diameter    | 1400-5000                    | 700           |

| Cat. No. | Form of Quartz   | Specific Surface Area ( $\text{m}^2 \cdot \text{g}^{-1}$ ) | Unit Size (g) |
|----------|------------------|------------------------------------------------------------|---------------|
| BCR169   | Alpha alumina    | 0.104 $\pm$ 0.012                                          | 60            |
| BCR170   | Alpha alumina    | 1.05 $\pm$ 0.05                                            | 60            |
| BCR171   | Alumina          | 2.95 $\pm$ 0.13                                            | 50            |
| BCR172   | Quartz           | 2.56 $\pm$ 0.10                                            | 10            |
| BCR173   | Titanium dioxide | 8.23 $\pm$ 0.21                                            | 46            |
| BCR175   | Tungsten         | 0.18 $\pm$ 0.04                                            | 200           |

### Cat. No. BCR301RM Mullite ( $3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$ )

High crystallinity.

Vitreous phase 0.03 g/g. No other phase detected.

| Impurities in g/kg:                |                        |
|------------------------------------|------------------------|
| Fe <sub>2</sub> O <sub>3</sub> < 2 | Na <sub>2</sub> O< 1   |
| CaO< 1.2                           | K <sub>2</sub> O< 0.5  |
| MgO< 0.5                           | TiO <sub>2</sub> < 0.5 |

| Cat. No. BCR301RM Mullite |                      |                    |
|---------------------------|----------------------|--------------------|
| Reflection                | Lattice spacing (nm) | Relative intensity |
| [110]                     | 0.538 2              | 0.50               |
| [210]                     | 0.339 0              | 1                  |
| [220]                     | 0.269 5              | 0.40               |

| Cat. No. BCR301RM Mullite |                      |                    |
|---------------------------|----------------------|--------------------|
| Reflection                | Lattice spacing (nm) | Relative intensity |
| [121]                     | 0.220 6              | 0.59               |
| [331]                     | 0.152 4              | 0.36               |

### Cat. No. BCR302 - Microcrystalline cellulose (Water content at 10 water activities)

The water content of the material when in equilibrium with the atmosphere above each saturated salt solution specified in the table was determined at 25 °C by the method recommended by COST 90.

BCR302 is specifically intended to check the correct application of the COST procedure for determination of water sorption isotherms of foods.

| Nominal water activity $a_w$ at 25 °C | Certified equilibrium water content mass fraction g/kg | Specified saturated salt aqueous solution |
|---------------------------------------|--------------------------------------------------------|-------------------------------------------|
| 0.1105                                | 21.3 ± 1.1                                             | 1 Lithium Chloride                        |
| 0.2245                                | 32.4 ± 1.3                                             | 2 Potassium Acetate                       |
| 0.3300                                | 41.5 ± 0.9                                             | 3 Magnesium Chloride                      |
| 0.4276                                | 51.6 ± 0.9                                             | 4 Potassium Carbonate                     |
| 0.5286                                | 59.7 ± 1.4                                             | 5 Magnesium Nitrate                       |
| 0.5770                                | 64.7 ± 1.5                                             | 6 Sodium Bromide                          |
| 0.7083                                | 82.5 ± 1.7                                             | 7 Strontium Chloride                      |
| 0.7528                                | 88.9 ± 2.4                                             | 8 Sodium Chloride                         |
| 0.8426                                | 110 ± 4                                                | 9 Potassium Chloride                      |
| 0.9019                                | 133 ± 5                                                | 10 Barium Chloride                        |

Availability: 20 g in sealed sachets.

| Cat. No. | Description            | Micropore volume (cm <sup>3</sup> / g <sup>1</sup> ) | Median micropore width (nm) |
|----------|------------------------|------------------------------------------------------|-----------------------------|
| BCR704   | Faujasite type zeolite | 0.205 ± 0.006                                        | 0.668 ± 0.019               |
| BCR705   | Linde type A zeolite   | 0.181 ± 0.006                                        | 0.592 ± 0.020               |

Availability: Glass bottle containing 10 g of pellets.

### Cat. No. BCR261T - Reference material for depth profiling by ion beam sputtering

In order to achieve the accuracy required when measuring compositional depth profiles using ion beam sputtering in association with Auger Electron Spectroscopy, a reference material of accurately known thickness on a stable substrate is required. BCR261T is a tantalum pentoxide on tantalum foil reference material existing in two nominal thicknesses of 30 and 100 nm.

|          | Nominal thickness (nm) | Certified values                             |                       |
|----------|------------------------|----------------------------------------------|-----------------------|
| Cat. No. |                        | 10 <sup>21</sup> oxygen atoms/m <sup>2</sup> | oxide thickness ratio |
| BCR261T  | (30)                   | 1.72 ± 0.07                                  | 0.321 ± 0.013         |
|          | (100)                  | 5.40 ± 0.12                                  |                       |

Values in brackets are not certified.

Availability: Four rectangular foils of 5 x 10 mm of each oxide thickness.

| Cat. No. ERMFD100 - Colloidal Silica in water              | Equivalent spherical diameter |                  |
|------------------------------------------------------------|-------------------------------|------------------|
|                                                            | Certified value (nm)          | Uncertainty (nm) |
| Intensity-weighted harmonic mean diameter (DLS)            | 19.0                          | 0.6              |
| Intensity-based modal Stokes diameter (CLS)                | 20.1                          | 1.3              |
| Number-based modal diameter (TEM/SEM)                      | 19.4                          | 1.3              |
| Intensity-weighted mean diameter (SAXS)                    | 21.8                          | 0.7              |
| Equivalent spherical diameter, volume-weighted mean (SAXS) | (20.4)                        | (1.6)            |
| Zeta Potential                                             | (- 43.0 mV)                   | (22 mV)          |

Values in brackets are not certified.

Availability: ERMFD100 is available in 10 mL pre-scored amber glass ampoules containing approximately 9 mL of suspension.

| Cat. No. ERMFD304 - Colloidal Silica in aqueous solution   | Equivalent spherical diameter |                  |
|------------------------------------------------------------|-------------------------------|------------------|
|                                                            | Certified value (nm)          | Uncertainty (nm) |
| Scattering intensity-weighted harmonic mean diameter (DLS) | 42.1                          | 0.6              |
| Extinction intensity-based modal Stokes (CLS)              | 33.0                          | 3.0              |
| Number-based modal diameter (TEM/SEM)                      | (27.8)                        | (1.5)            |

Values in brackets are not certified.

Availability: ERMFD304 is available in 10 mL pre-scored amber glass ampoules containing approximately 9 mL of suspension.

| Cat. No. ERMFD102 -<br>Mixture of Silica Nanoparticles in aqueous solution | Equivalent spherical diameter |                  |                      |                  |
|----------------------------------------------------------------------------|-------------------------------|------------------|----------------------|------------------|
|                                                                            | Size class A                  |                  | Size class B         |                  |
|                                                                            | Certified value (nm)          | Uncertainty (nm) | Certified value (nm) | Uncertainty (nm) |
| Scattering intensity-weighted arithmetic mean hydrometric diameter (DLS)   | 17.8                          | 1.5              | 88.5                 | 2.2              |
| Extinction intensity-weighted modal Stokes' diameter (CLS)                 | 23.9                          | 2.0              | 88                   | 7                |
| Number-weighted modal area-equivalent diameter (TEM and SEM)               | 18.2                          | 1.6              | 84.0                 | 2.1              |
| Number-weighted median area-equivalent diameter (TEM and SEM)              | 18.3                          | 1.7              | 83.3                 | 2.3              |
| Number-weighted mean hydrodynamic diameter (PTA)                           | -                             | -                | (82)                 | (4)              |
| Number-weighted modal maximum particle height (ATM)                        | (16.9)                        | (1.8)            | (80)                 | (6)              |

Values in brackets are not certified. More indicative & information values are given on the certificate

Availability: ERMFD102 is available in 10 mL pre-scored amber glass ampoules containing approximately 9 mL of suspension.

## 5 MATERIALS RELATED TO INDUSTRIAL APPLICATIONS

### 5.1 CERTIFIED FOR COMPOSITION

| Certified Parameter                   | Cat. No. IRMM441 n-Heptane (g/kg) | Cat. No. IRMM442 Isooctane (g/kg) |
|---------------------------------------|-----------------------------------|-----------------------------------|
| Isooctane, purity by difference       |                                   | 999.85 ± 0.05                     |
| n-Heptane, purity by difference       | 999.85 ± 0.05                     |                                   |
| Impurities                            |                                   |                                   |
| Total organics (other than isoctane)  |                                   | 0.11 ± 0.04                       |
| Total organics (other than n-Heptane) | 0.12 ± 0.05                       |                                   |
| Isooctane                             | 0.07 ± 0.02                       |                                   |
| n-Heptane                             |                                   | 0.02 ± 0.02                       |
| Water                                 | 0.03 ± 0.02                       | 0.04 ± 0.02                       |

Availability: IRMM441 and -442 are supplied in ampoules of 100 mL.

| Cat. No. ERMEF001 - Biodiesel certified for selected parameters specified in EN 14214 | Unit              | Certified values |
|---------------------------------------------------------------------------------------|-------------------|------------------|
| Ester content                                                                         | % (m/m)           | 98.9 ± 1.7       |
| Linolenic acid methyl ester content                                                   | % (m/m)           | 8.82 ± 0.16      |
| Monoglyceride content                                                                 | % (m/m)           | 0.65 ± 0.04      |
| Diglyceride content                                                                   | % (m/m)           | 0.136 ± 0.015    |
| Triglyceride content                                                                  | % (m/m)           | <0.1             |
| Total glycerol content                                                                | % (m/m)           | 0.187 ± 0.009    |
| Water content                                                                         | % (m/m)           | 0.0205 ± 0.0024  |
| Density (at 15 °C)                                                                    | kg/m <sup>3</sup> | 883.20 ± 0.04    |

| Cat. No. ERMEF001 - Biodiesel certified for selected parameters specified in EN 14214 |  |  | Unit               | Certified values |         |
|---------------------------------------------------------------------------------------|--|--|--------------------|------------------|---------|
| Viscosity (at 40 °C)                                                                  |  |  | mm <sup>2</sup> /s | 4.465            | ± 0.005 |
| Oxidation stability (at 110 °C)                                                       |  |  | h                  | 9.8              | ± 0.5   |
| Acid value                                                                            |  |  | mg KOH/g           | 0.184            | ± 0.015 |
| Iodine value                                                                          |  |  | g iodine/100 g     | 112              | ± 4     |
| Flash point                                                                           |  |  | °C                 | 181              | ± 14    |

Availability: Vials containing about 27 mL of biodiesel.

| Cat. No.      | Description             | Substance                      | Certified values |              |
|---------------|-------------------------|--------------------------------|------------------|--------------|
| <b>BCR032</b> | Moroccan Phosphate rock | CaO                            | 518              | ± 4 g/kg     |
|               |                         | P <sub>2</sub> O <sub>5</sub>  | 329.8            | ± 1.7 g/kg   |
|               |                         | CO <sub>2</sub>                | 51.0             | ± 0.8 g/kg   |
|               |                         | F                              | 40.4             | ± 0.6 g/kg   |
|               |                         | SiO <sub>2</sub>               | 20.9             | ± 1.2 g/kg   |
|               |                         | SO <sub>3</sub>                | 18.4             | ± 0.8 g/kg   |
|               |                         | Al <sub>2</sub> O <sub>3</sub> | 5.5              | ± 0.6 g/kg   |
|               |                         | MgO                            | 4.0              | ± 0.1 g/kg   |
|               |                         | Fe <sub>2</sub> O <sub>3</sub> | 2.3              | ± 0.1 g/kg   |
|               |                         | As                             | (9.5             | ± 0.5 mg/kg) |
|               |                         | B                              | (22.6            | ± 2.2 mg/kg) |

| Cat. No.      | Description             | Substance | Certified values |                |
|---------------|-------------------------|-----------|------------------|----------------|
| <b>BCR032</b> | Moroccan Phosphate rock | Cd        | (20.8            | ± 0.7 mg/kg)   |
|               |                         | Cr        | (257             | ± 16 mg/kg)    |
|               |                         | Co        | (0.59            | ± 0.06 mg/kg)  |
|               |                         | Cu        | (33.7            | ± 1.4 mg/kg)   |
|               |                         | Hg        | (0.055           | ± 0.011 mg/kg) |
|               |                         | Mn        | (18.8            | ± 1.3 mg/kg)   |
|               |                         | Ni        | (34.6            | ± 1.9 mg/kg)   |
|               |                         | Ti        | (171             | ± 10 mg/kg)    |
|               |                         | V         | (153             | ± 7 mg/kg)     |
|               |                         | Zn        | (253             | ± 6 mg/kg)     |

Values in brackets are not certified. Availability: Units of about 100 g in the form of fine powder.

| Cat. No.      | Description | Substance | Certified values (g/kg) |       |
|---------------|-------------|-----------|-------------------------|-------|
| <b>BCR010</b> | Tin Ore     | Sn        | 765.9                   | ± 1.2 |

Availability: This CRM is contained in brown glass bottles. The approximate quantity per unit is 225 g.

| Cat. No.      | Description        | Substance                      | Certified values (g/kg) |        |
|---------------|--------------------|--------------------------------|-------------------------|--------|
| <b>BCR033</b> | Super-phosphate    | P <sub>2</sub> O <sub>5</sub>  | 193.4                   | ± 1.2  |
|               |                    | SO <sub>4</sub>                | 428.0                   | ± 4.1  |
|               |                    | CaO                            | 314.8                   | ± 3.1  |
|               |                    | SiO <sub>2</sub>               | 29.2                    | ± 1.2  |
|               |                    | F                              | 16.5                    | ± 0.5  |
|               |                    | Al <sub>2</sub> O <sub>3</sub> | 11.0                    | ± 0.8  |
|               |                    | Fe <sub>2</sub> O <sub>3</sub> | 4.0                     | ± 0.2  |
|               |                    | MgO                            | 2.1                     | ± 0.2  |
|               |                    | K                              | 502.5                   | ± 1.1  |
|               |                    | Cl                             | 478.0                   | ± 0.9  |
| <b>BCR113</b> | Potassium Chloride | Na                             | 15.3                    | ± 0.2  |
|               |                    | Ca                             | 1.03                    | ± 0.04 |
|               |                    | Mg                             | 0.24                    | ± 0.01 |
|               |                    | water soluble K                | 501.3                   | ± 0.7  |
|               |                    | K                              | 418.0                   | ± 0.9  |
|               |                    | SO <sub>4</sub>                | 533                     | ± 2    |
| <b>BCR114</b> | Potassium Sulphate | Cl                             | 18.5                    | ± 0.1  |
|               |                    | Na                             | 11.0                    | ± 0.1  |

| Cat. No. | Description              | Substance           | Certified values (g/kg) |
|----------|--------------------------|---------------------|-------------------------|
|          |                          | Ca                  | 9.4 ± 0.2               |
| BCR114   |                          | Mg                  | 0.74 ± 0.01             |
|          |                          | water soluble K     | 417.6 ± 0.8             |
| BCR178   | Calcium Ammonium Nitrate | NH <sub>4</sub> – N | 130.44 ± 0.32           |
|          |                          | NO <sub>3</sub> – N | 130.15 ± 0.57           |
|          |                          | total – N           | 260.19 ± 0.54           |
|          |                          | Ca                  | 88.82 ± 0.27            |
| BCR179   | Urea                     | total – N           | 465.4 ± 0.8             |
|          |                          | Uric – n            | 460.9 ± 0.9             |
|          |                          | Biuret              | 10.37 ± 0.11            |

Availability: Units of about 100 g in the form of fine powder.

| Substance                      | Cat. No. BCR126A Lead crystal glass (g/kg) |
|--------------------------------|--------------------------------------------|
| SiO <sub>2</sub>               | 57.80 ± 0.11                               |
| PbO                            | 23.98 ± 0.06                               |
| K <sub>2</sub> O               | 9.99 ± 0.07                                |
| Al <sub>2</sub> O <sub>3</sub> | 0.126 ± 0.013                              |
| Fe <sub>2</sub> O <sub>3</sub> | 0.005 5 ± 0.001 2                          |
| Sb <sub>2</sub> O <sub>3</sub> | 0.291 ± 0.012                              |
| BaO                            | 1.053 ± 0.030                              |
| CaO                            | 1.033 ± 0.030                              |

| Substance                                                    | Cat. No. BCR126A Lead crystal glass (g/kg) |
|--------------------------------------------------------------|--------------------------------------------|
| MgO                                                          | 0.512 ± 0.013                              |
| ZnO                                                          | 1.01 ± 0.04                                |
| Na <sub>2</sub> O                                            | 3.57 ± 0.07                                |
| Li <sub>2</sub> O                                            | 0.494 ± 0.016                              |
| Density at 20 °C                                             | 2.990 5 ± 0.001 6 g/cm <sup>3</sup>        |
| Refractive index n <sub>D</sub> <sup>20 °C</sup> at 589.3 nm | 1.559 67 ± 0.000 22                        |

Availability: In the form of square plates (100 × 100 mm) and 10 mm thickness.

## 5.2 CERTIFIED FOR TRACE ELEMENT CONTENT

| Cat. No. | Material     | Certified value                                                     | Form                                                                 | Unit                                                                                     |
|----------|--------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| IRMM521  | Ni           | < 0.1 mg Co kg <sup>-1</sup>                                        | B: 0.5 mm wire<br>R: 0.1 mm foil                                     | 100 cm <sup>2</sup> (1.8 g)<br>75 cm <sup>2</sup> (6.7 g)                                |
| IRMM522  | Cu           | < 0.05 mg Co kg <sup>-1</sup><br>0.95 ± 0.04 mg Ag kg <sup>-1</sup> | A: 0.1 mm foil<br>B: 1.0 mm foil<br>C: 0.5 mm wire<br>D: 1.0 mm wire | 100 cm <sup>2</sup> (8.9 g)<br>20 cm <sup>2</sup> (17.8 g)<br>1 m (1.8 g)<br>1 m (7.0 g) |
| IRMM523  | Al           | < 0.1 mg Na kg <sup>-1</sup>                                        | A: 0.1 mm foil<br>B: 1.0 mm foil<br>C: 1.0 mm wire                   | 100 cm <sup>2</sup> (2.7 g)<br>20 cm <sup>2</sup> (5.4 g)<br>1 m (2.1 g)                 |
| IRMM524  | Fe           | < 0.05 mg Co kg <sup>-1</sup><br>< 0.1 mg Mn kg <sup>-1</sup>       | A: 0.1 mm foil<br>B: 0.5 mm wire                                     | 100 cm <sup>2</sup> (7.9 g)<br>1 m (1.6 g)                                               |
| IRMM525  | Nb           | 19.6 ± 1.8 mg Ta kg <sup>-1</sup>                                   | A: 0.02 mm foil<br>B: 0.1 mm foil<br>C: 0.5 mm wire                  | 20 cm <sup>2</sup> (0.3 g)<br>20 cm <sup>2</sup> (1.7 g)<br>1 m (1.7 g)                  |
| IRMM526  | Nb           | 0.30 ± 0.09 mg Ta kg <sup>-1</sup>                                  | A: 0.02 mm foil<br>B: 0.1 mm foil<br>C: 0.5 mm wire                  | 20 cm <sup>2</sup> (0.3 g)<br>20 cm <sup>2</sup> (1.7 g)<br>1 m (1.7 g)                  |
| IRMM529  | Rh           | < 5 g Pt kg <sup>-1</sup><br>26.0 ± 0.6 g Ir kg <sup>-1</sup>       | 0.05 mm foil                                                         | 20 cm <sup>2</sup> (1.2 g)                                                               |
| IRMM531  | Ti           | < 0.1 mg Sc kg <sup>-1</sup>                                        | A: 0.1 mm foil<br>B: 0.5 mm foil<br>C: 0.5 mm wire                   | 100 cm <sup>2</sup> (4.5 g)<br>20 cm <sup>2</sup> (4.5 g)<br>1 m (1 g)                   |
| IRMM527R | Al – 0.1% Co | 1.001 ± 0.024 g Co kg <sup>-1</sup>                                 | A: 0.1 mm foil<br>B: 0.5 mm wire<br>C: 1.0 mm wire                   | 100 cm <sup>2</sup> (2.7 g)<br>1 m (0.5 g)<br>1 m (2.1 g)                                |

| Cat. No. | Material      | Certified value                            | Form                                               | Unit                                                      |
|----------|---------------|--------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
| IRMM528R | Al – 1.0% Co  | 10.02 $\pm$ 0.23 g Co kg <sup>-1</sup>     | A: 0.1 mm foil<br>C: 1.0 mm wire                   | 100 cm <sup>2</sup> (2.7 g)<br>1 m (2.1 g)                |
| IRMM530R | Al – 0.1% Au  | 1.003 $\pm$ 0.012 g Au kg <sup>-1</sup>    | A: 0.1 mm foil<br>C: 1.0 mm wire                   | 100 cm <sup>2</sup> (2.7 g)<br>1 m (2.1 g)                |
| IRMM532  | Al – 0.01% Co | 0.100 0 $\pm$ 0.0025 g Co kg <sup>-1</sup> | A: 0.1 mm foil<br>B: 0.5 mm wire<br>C: 1.0 mm wire | 100 cm <sup>2</sup> (2.7 g)<br>1 m (0.5 g)<br>1 m (2.1 g) |
| IRMM533  | Al – 0.1% Ag  | 0.996 $\pm$ 0.017 g Ag kg <sup>-1</sup>    | A: 0.1 mm foil<br>B: 0.5 mm wire<br>C: 1.0 mm wire | 100 cm <sup>2</sup> (2.7 g)<br>1 m (0.5 g)<br>1 m (2.1 g) |
| IRMM534  | Al – 2.0% Sc  | 19.95 $\pm$ 0.20 g Sc kg <sup>-1</sup>     | A: 0.1 mm foil<br>B: 0.5 mm wire<br>C: 1.0 mm wire | 100 cm <sup>2</sup> (2.7 g)<br>1 m (0.5 g)<br>1 m (2.1 g) |

| Cat. No. | Description                       | Substance | Certified value (mg/kg) | Form, dimensions <sup>1)</sup> and availability                                 |
|----------|-----------------------------------|-----------|-------------------------|---------------------------------------------------------------------------------|
| BCR017A  | Copper                            | P         | 6.85 $\pm$ 0.2          | A:Ø42 mm,h30 mm                                                                 |
| BCR017B  |                                   | S         | 10.4 $\pm$ 0.6          | B:chips (bottle with 50 g)                                                      |
| BCR022A  | Copper (electrolytic tough pitch) | O         | 138 $\pm$ 7             | Ø26 mm,h9 mm                                                                    |
| BCR022B  | Copper (electrolytic tough pitch) | O         | 138 $\pm$ 7             | Ø9 mm,h50 mm                                                                    |
| BCR054R  | Copper (low oxygen)               | O         | 0.47 $\pm$ 0.07         | Ø7 mm,h50 mm                                                                    |
| BCR058   | Copper (continuous cast)          | O         | 390 $\pm$ 12            | Ø7 mm,h50 mm                                                                    |
| BCR024B  | Titanium                          | N         | 117 $\pm$ 13            | B:25 cubes of 0.4 g                                                             |
| BCR024C  |                                   | O         | 608+23                  | C:25 cubes of 0.2 g                                                             |
| BCR059A  | Titanium alloy Ti6Al4V            | O         | 1750 $\pm$ 70           | A:Ø26 mm,h9 mm                                                                  |
| BCR059B  |                                   | N         | 172 $\pm$ 27            | B:25 cubes of 0.2 g                                                             |
| BCR318   | Titanium                          | H         | 12.2 $\pm$ 0.6          | Ø7 mm,h1 mm<br>(bottle with approx. 100 discs)                                  |
| BCR275   | Zirconium alloy Zircaloy-4        | O         | 1670 $\pm$ 50           | Ø13 mm,h1 mm                                                                    |
|          |                                   | N         | 39.0 $\pm$ 1.7          | (bottle with 10 discs)                                                          |
|          |                                   | C         | 113 $\pm$ 4             |                                                                                 |
| BCR276   | Zirconium alloy Zircaloy-4        | O         | 1540 $\pm$ 80           | Ø4.5 mm,h2 mm                                                                   |
|          |                                   | N         | 41 $\pm$ 9              | (bottle with approx. 100 discs)                                                 |
|          |                                   | C         | 108 $\pm$ 101           |                                                                                 |
| BCR102   | Tungsten carbide powder           | O         | 185 $\pm$ 4             | Bottles containing 2 - 3 g powder, sealed under argon in an aluminium container |

1)Ø = diameter, h = height

| Substance | Cat. No. BCR286<br>Electrolytically refined lead (mg/kg) | Cat. No. BCR287<br>Thermally refined lead (mg/kg) | Cat. No. BCR288<br>Lead with added impurities (mg/kg) |
|-----------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| Ag        |                                                          | 15.20 $\pm$ 0.21                                  |                                                       |
| As        |                                                          |                                                   | 55.7 $\pm$ 1.6                                        |
| Bi        | 21.5 $\pm$ 0.5                                           | 67.3 $\pm$ 1.1                                    | 215.8 $\pm$ 2.4                                       |
| Cd        |                                                          | 0.356 $\pm$ 0.024                                 | 33.3 $\pm$ 0.9                                        |
| Cu        |                                                          | 0.98 $\pm$ 0.05                                   | 19.3 $\pm$ 0.4                                        |
| Sb        | 0.099 $\pm$ 0.021                                        | 0.040 $\pm$ 0.015                                 |                                                       |
| Se        |                                                          |                                                   | < 0.2                                                 |
| Te        |                                                          |                                                   | 32.8 $\pm$ 1.3                                        |
| Tl        | 2.47 $\pm$ 0.07                                          | 0.73 $\pm$ 0.04                                   | 2.26 $\pm$ 0.08                                       |

| Substance | Cat. No. BCR286<br>Electrolytically refined lead (mg/kg) | Cat. No. BCR287<br>Thermally refined lead (mg/kg) | Cat. No. BCR288<br>Lead with added impurities (mg/kg) |
|-----------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| Zn        | < 0.1                                                    | < 0.1                                             | 8.2 ± 0.4                                             |

Availability: CRMs are available as follows: BCR286A and -287A: blocks of 60 × 60 × 12 mm, BCR286B, -287B and -288B: chips in bottles containing about 160 g.

| Substance              | Cat. No. BCR321 | Cat. No. ERMEB322 | Cat. No. ERMEB323 | Cat. No. ERMEB324 | Cat. No. ERMEB325 | Cat. No. BCR326 | Cat. No. BCR327 |
|------------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|
| Unalloyed zinc (mg/kg) |                 |                   |                   |                   |                   |                 |                 |
| Al                     | < 0.7           |                   |                   |                   |                   |                 |                 |
| Cd                     | (0.23 ± 0.03)   | 15.08 ± 0.30      | 6.51 ± 0.21       | 48.6 ± 1.1        | 94.7 ± 2.5        | 203.0 ± 2.0     | 301.4 ± 2.3     |
| Cu                     | (0.97 ± 0.05)   | 5.89 ± 0.15       | 18.9 ± 0.4        | 9.87 ± 0.18       | 47.5 ± 2.0        | 104.8 ± 2.7     | (0.56 ± 0.11)   |
| Fe                     | (2.22 ± 0.14)   | 19.1 ± 0.8        | 11.3 ± 0.7        | 58.5 ± 1.6        | 56.1 ± 3.3        | 264.8 ± 2.1     | 144.0 ± 1.3     |
| In                     | < 0.2           |                   |                   |                   |                   |                 |                 |
| Pb                     | 4.85 ± 0.20     | 15.0 ± 0.5        | 48.6 ± 0.9        | 26.1 ± 0.5        | 142 ± 9           | 307.0 ± 1.6     | 409.4 ± 2.3     |
| Sn                     | < 0.5           | 5.6 ± 0.6         | 18.7 ± 0.7        | 9.8 ± 0.5         | 46.1 ± 2.0        |                 |                 |
| Tl                     | 0.78 ± 0.10     | 5.28 ± 0.30       | 10.8 ± 0.5        | 19.9 ± 0.5        | 36.8 ± 1.2        |                 |                 |

Values in brackets are not certified.

Availability: Discs of 80 mm diameter and 20 mm thickness (BCR321, -326, -327) and 60 mm diameter, 30 mm thickness, respectively (ERMEB322, EB323, EB324 and EB325).

| Substance     | Cat. No. BCR351                  | Cat. No. BCR352                  | Cat. No. BCR353                | Cat. No. BCR354                  | Cat. No. BCR355                  |
|---------------|----------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|
| ZnAl4 (mg/kg) |                                  |                                  |                                |                                  |                                  |
| Al            | [43.55 ± 0.11] × 10 <sup>3</sup> | [41.50 ± 0.10] × 10 <sup>3</sup> | [39.5 ± 0.4] × 10 <sup>3</sup> | [37.27 ± 0.16] × 10 <sup>3</sup> | [34.43 ± 0.13] × 10 <sup>3</sup> |
| Cd            | (0.21 ± 0.03)                    | 2.88 ± 0.12                      | 10.44 ± 0.16                   | 29.7 ± 0.4                       | 58.1 ± 0.4                       |
| Cu            | 12.13 ± 0.15                     | 31.26 ± 0.29                     | 100.0 ± 0.8                    | 312.3 ± 2.5                      | 1035 ± 6                         |
| In            | < 0.2                            | 3.02 ± 0.28                      | 2.55 ± 0.23                    | 9.8 ± 0.9                        | 24.6 ± 1.4                       |
| Mg            | 131.0 ± 0.9                      | 283.0 ± 1.8                      | 452.5 ± 2.4                    | 602 ± 5                          | 786 ± 6                          |
| Ni            | (1.9 ± 0.6)                      | 6.74 ± 0.16                      |                                | 83.1 ± 2.9                       | 268 ± 8                          |
| Pb            | 4.50 ± 0.20                      | (6.4 ± 1.6)                      | 24.4 ± 1.3                     | 30.8 ± 1.2                       | 56.9 ± 1.9                       |
| Sn            | < 1                              | 3.0 ± 0.7                        | 5.6 ± 0.6                      | 14.1 ± 1.1                       | 29.1 ± 2.0                       |
| Tl            | 0.74 ± 0.06                      | 3.2 ± 0.4                        | 3.95 ± 0.22                    | 11.01 ± 0.20                     | 23.25 ± 0.28                     |

Values in brackets () are not certified.

Availability: Discs of 80 mm diameter and 20 mm thickness.

|                  | Cat. No. BCR356                   | Cat. No. BCR357                   | Cat. No. BCR359                  | Cat. No. BCR360                  | Cat. No. BCR361                  |
|------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| ZnAl4Cu1 (mg/kg) |                                   |                                   |                                  |                                  |                                  |
| Al               | [44.34 ± 0.11] × 10 <sup>3</sup>  | [42.27 ± 0.11] × 10 <sup>3</sup>  | [37.11 ± 0.11] × 10 <sup>3</sup> | [34.27 ± 0.12] × 10 <sup>3</sup> | [40.68 ± 0.19] × 10 <sup>3</sup> |
| Cd               | 0.73 ± 0.09                       | 2.83 ± 0.10                       | 29.8 ± 0.4                       | 59.5 ± 0.6                       | (0.80 ± 0.17)                    |
| Cu               | [3.944 ± 0.022] × 10 <sup>3</sup> | [5.849 ± 0.021] × 10 <sup>3</sup> | [9.89 ± 0.04] × 10 <sup>3</sup>  | [12.34 ± 0.05] × 10 <sup>3</sup> | [7.98 ± 0.04] × 10 <sup>3</sup>  |
| Fe               | 31.5 ± 0.6                        | 25.7 ± 1.2                        | 119.7 ± 1.1                      |                                  | 10.34 ± 0.26                     |
| In               | < 0.2                             | 3.30 ± 0.14                       | 15.5 ± 0.6                       | 29.8 ± 0.6                       | (< 0.2)                          |
| Mg               | 132.3 ± 1.8                       | 273 ± 4                           | 557 ± 5                          | 705 ± 5                          |                                  |
| Ni               | 3.43 ± 0.19                       | 9.82 ± 0.25                       | 92.6 ± 0.6                       | 267 ± 8                          |                                  |
| Pb               | 9.87 ± 0.23                       | 13.8 ± 0.6                        | 36.2 ± 0.8                       | 73.9 ± 1.4                       | 5.31 ± 0.20                      |
| Sn               | (0.32 ± 0.16)                     | 3.51 ± 0.14                       | 16.93 ± 0.22                     | 33.0 ± 0.8                       | 46.3 ± 0.9                       |
| Tl               | 0.79 ± 0.05                       | 2.76 ± 0.05                       | 13.34 ± 0.24                     | 25.9 ± 0.7                       | 37.4 ± 0.5                       |

Values in brackets () are not certified. Availability: Discs of 80 mm diameter and 20 mm thickness.

| Substance | Cat. No. BCR089<br>TiAl6V4 | Cat. No. BCR090<br>Titanium with added impurities |
|-----------|----------------------------|---------------------------------------------------|
| (mg/kg)   |                            |                                                   |
| Al        | 59700 $\pm$ 400            | 28.2 $\pm$ 1.4                                    |
| C         | 38 $\pm$ 10                | 501 $\pm$ 14                                      |
| B         |                            | 533 $\pm$ 11                                      |
| Co        |                            | 513 $\pm$ 9                                       |
| Cr        | 122 $\pm$ 6                | 563 $\pm$ 16                                      |
| Cu        | 10.3 $\pm$ 1.2             | 314 $\pm$ 10                                      |
| Fe        | 515 $\pm$ 16               | 488 $\pm$ 11                                      |
| H         | 31 $\pm$ 5                 | (492 $\pm$ 26)                                    |
| Hf        | 0.126 $\pm$ 0.011          | 667 $\pm$ 7                                       |
| Mn        | 4.2 $\pm$ 0.6              | (710 $\pm$ 50)                                    |
| Mo        | 15.2 $\pm$ 1.8             |                                                   |

Values in brackets are not certified.

Availability: BCR089: Cylinder of 40 mm Ø and 20 mm height. BCR090A: Cylinder of 40 mm Ø and 20 mm height. BCR090B: Cubes of about 0.2 g in bottles containing approximately 25 g.

| Substance | Cat. No. BCR089<br>TiAl6V4 | Cat. No. BCR090<br>Titanium with added impurities |
|-----------|----------------------------|---------------------------------------------------|
| (mg/kg)   |                            |                                                   |
| N         | 212 $\pm$ 33               | (500+40)                                          |
| Nb        |                            | (436+13)                                          |
| Ni        | 106 $\pm$ 7                |                                                   |
| O         | 1660 $\pm$ 60              |                                                   |
| Sb        | 1.94 $\pm$ 0.12            |                                                   |
| Sn        | 10.4 $\pm$ 1.7             |                                                   |
| Ta        | 0.30 $\pm$ 0.09            |                                                   |
| V         | 39760 $\pm$ 290            |                                                   |
| W         | 1.6 $\pm$ 0.4              |                                                   |
| Zr        | 2.8 $\pm$ 0.6              |                                                   |

Availability: Set of five discs (one of each composition) of 35 mm Ø and 2 mm thickness, packed in a box.

| Cat. No. | Substance | Quaternary bronze | Brass           | Arsenic-Copper  | Lead-bronze     | Tin-bronze      |
|----------|-----------|-------------------|-----------------|-----------------|-----------------|-----------------|
| (g/kg)   |           |                   |                 |                 |                 |                 |
| BCR691   | As        | 1.94 $\pm$ 0.10   | 0.99 $\pm$ 0.10 | 46.0 $\pm$ 2.7  | 2.85 $\pm$ 0.22 | 1.94 $\pm$ 0.20 |
|          | Pb        | 79 $\pm$ 7        | 3.9 $\pm$ 0.4   | 1.75 $\pm$ 0.14 | 92 $\pm$ 17     | 2.04 $\pm$ 0.18 |
|          | Sn        | 71.6 $\pm$ 2.1    | 20.6 $\pm$ 0.7  | 2.02 $\pm$ 0.29 | 101 $\pm$ 8     | 70 $\pm$ 6      |
|          | Zn        | 60.2 $\pm$ 2.2    | 148 $\pm$ 5     | 0.55 $\pm$ 0.05 | 1.48 $\pm$ 0.24 | 1.57 $\pm$ 0.25 |

Availability: These CRMs are available in units of about 20 g in ampoules with argon atmosphere.

| Substance | Cat. No. BCR460 Total Fluorine in coal powder (mg/kg) |
|-----------|-------------------------------------------------------|
| Cl        | (59 $\pm$ 18)                                         |
| F         | 225 $\pm$ 6                                           |

| Cat. No. | Description                   | Certified S content (g/kg) |
|----------|-------------------------------|----------------------------|
| BCR331   | Steam Coal                    | 4.99 $\pm$ 0.10            |
| BCR332   | High Volatile Industrial Coal | 9.61 $\pm$ 0.17            |
| BCR333   | Coking Steam Coal             | 13.44 $\pm$ 0.26           |

Values in brackets are not certified.

Availability: BCR460 in glass bottles containing about 40 g.

| Substance | Cat. No. BCR461 Total Fluorine in clay (mg/kg) |
|-----------|------------------------------------------------|
| F         | 568 $\pm$ 60                                   |

Availability: The samples are provided in units of 30 g in glass bottles.

| Cat. No. | Description | Certified S content (g/kg) |
|----------|-------------|----------------------------|
| ERMEF672 | Gasoil      | 0.203 $\pm$ 0.006          |
| ERMEF671 | Gasoil      | 0.452 $\pm$ 0.009          |
| ERMEF104 | Gasoil      | 1.019 $\pm$ 0.019          |
| BCR105   | Gasoil      | 3.63 $\pm$ 0.10            |

| Cat. No. | Description | Certified S content (g/kg) |
|----------|-------------|----------------------------|
| BCR106   | Gasoil      | 5.02 $\pm$ 0.08            |
| BCR107   | Gasoil      | 10.40 $\pm$ 0.15           |
| ERMEF211 | Petrol      | 0.0488 $\pm$ 0.0017        |

Availability: The materials are available in dark glass ampoules sealed under nitrogen. ERMEF104, -671 and -672 contain 8 mL, BCR105, 106 and -107 contain 25 g. ERMEF211 is available in clear borosilicate glass ampoules and contains 19 mL.

| Cat. No. | Description | Solvent Yellow 124 (SY124) content (mg/kg) |
|----------|-------------|--------------------------------------------|
| ERMEF317 | Gasoil      | 0.141 ± 0.018                              |
| ERMEF318 | Gasoil      | 7.0 ± 0.4                                  |

Availability: The materials are available in dark glass ampoules sealed under nitrogen, containing 20 mL.

| Certified Parameter                   | Cat. No. IRMM441 n-Heptane (%) | Cat. No. IRMM442 Isooctane(%) |
|---------------------------------------|--------------------------------|-------------------------------|
| n-Heptane, purity by difference       | 99.985 ± 0.005                 |                               |
| Isooctane, purity by difference       |                                | 99.985 ± 0.005                |
| Impurities                            |                                |                               |
| Total organics (other than isoctane)  |                                | 0.011 ± 0.004                 |
| Total organics (other than n-Heptane) | 0.012 ± 0.005                  |                               |
| Isooctane                             | 0.007 ± 0.002                  |                               |
| n-Heptane                             |                                | 0.002 ± 0.002                 |
| Water                                 | 0.003 ± 0.002                  | 0.004 ± 0.002                 |
| Lead                                  | < 0.5 µg/L                     | < 1 µg/L                      |

Availability: IRMM441 and -442 are supplied in ampoules of 100 mL.

| Cat. No. | Description       | Substance | Certified values (g/kg) |
|----------|-------------------|-----------|-------------------------|
| BCR109   | Zinc ore (blende) | Pb        | 7.38 ± 0.03             |
|          |                   | Fe        | 145.1 ± 0.6             |
|          |                   | Cu        | 9.46 ± 0.08             |
|          |                   | Cd        | 4.61 ± 0.09             |

| Cat. No. | Description       | Substance | Certified values (g/kg) |
|----------|-------------------|-----------|-------------------------|
| BCR109   | Zinc ore (blende) | Mg        | 0.20 ± 0.01             |
|          |                   | F         | 0.081 ± 0.004           |
|          |                   | Hg        | 0.0096 ± 0.00012        |

Availability: This RM is contained in brown glass bottles. The approximate quantity per unit is 200 g for BCR109.

| Cat. No. | Description             | Substance                      | Certified values (g/kg)                          |
|----------|-------------------------|--------------------------------|--------------------------------------------------|
| BCR032   | Moroccan Phosphate rock | CaO                            | 517.6 ± 3.2                                      |
|          |                         | P <sub>2</sub> O <sub>5</sub>  | 329.8 ± 1.7                                      |
|          |                         | CO <sub>2</sub>                | 51.0 ± 0.8                                       |
|          |                         | F                              | 40.4 ± 0.6                                       |
|          |                         | SiO <sub>2</sub>               | 20.9 ± 1.2                                       |
|          |                         | SO <sub>3</sub>                | 18.4 ± 0.8                                       |
|          |                         | Al <sub>2</sub> O <sub>3</sub> | 5.5 ± 0.6                                        |
|          |                         | MgO                            | 4.0 ± 0.1                                        |
|          |                         | Fe <sub>2</sub> O <sub>3</sub> | 2.3 ± 0.1                                        |
|          |                         | As                             | 9.5 × 10 <sup>-3</sup> ± 0.5 × 10 <sup>-3</sup>  |
|          |                         | B                              | 22.6 × 10 <sup>-3</sup> ± 2.2 × 10 <sup>-3</sup> |

| Cat. No. | Description             | Substance | Certified values (g/kg)                           |
|----------|-------------------------|-----------|---------------------------------------------------|
| BCR032   | Moroccan Phosphate rock | Cd        | 20.8 × 10 <sup>-3</sup> ± 0.7 × 10 <sup>-3</sup>  |
|          |                         | Cr        | 257 × 10 <sup>-3</sup> ± 16 × 10 <sup>-3</sup>    |
|          |                         | Co        | 0.59 × 10 <sup>-3</sup> ± 0.06 × 10 <sup>-3</sup> |
|          |                         | Cu        | 33.7 × 10 <sup>-3</sup> ± 1.4 × 10 <sup>-3</sup>  |
|          |                         | Hg        | 55 × 10 <sup>-6</sup> ± 11 × 10 <sup>-6</sup>     |
|          |                         | Mn        | 18.8 × 10 <sup>-3</sup> ± 1.3 × 10 <sup>-3</sup>  |
|          |                         | Ni        | 34.6 × 10 <sup>-3</sup> ± 1.9 × 10 <sup>-3</sup>  |
|          |                         | Ti        | 171 × 10 <sup>-3</sup> ± 10 × 10 <sup>-3</sup>    |
|          |                         | V         | 153 × 10 <sup>-3</sup> ± 7 × 10 <sup>-3</sup>     |
|          |                         | Zn        | 253 × 10 <sup>-3</sup> ± 6 × 10 <sup>-3</sup>     |

Availability: Units of about 100 g in the form of fine powder.

| Substance | Cat. No. BCR664 Glass (mg/kg) |
|-----------|-------------------------------|
| As        | 5.9 ± 0.4                     |
| Ba        | 29.1 ± 0.7                    |
| Cd        | 5.7 ± 0.4                     |
| Cl        | 68 ± 8                        |
| Co        | 2.77 ± 0.21                   |

| Substance | Cat. No. BCR664 Glass (mg/kg) |
|-----------|-------------------------------|
| Cr        | 2.65 ± 0.13                   |
| Pb        | 53.1 ± 2.6                    |
| Sb        | 24.3 ± 1.0                    |
| Se        | 8.6 ± 0.5                     |

Availability: Glass plate of (50 × 50 × 7) mm.

| Cat. No. | Material                  | Uranium mass fraction (mg/kg) |
|----------|---------------------------|-------------------------------|
| IRMM540R | Uranium-doped oxide glass | 15.0 $\pm$ 0.9                |
| IRMM541  | Uranium-doped oxide glass | 49.4 $\pm$ 2.7                |

Availability: Glass disc of 15 mm diameter and 2 mm thickness, polished on both sides.

| Substance                                                              | Cat. No. ERMEC590 Polyethylene (LDPE) g/kg | Cat. No. ERMEC591 Polypropylene (PP) g/kg |
|------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| Br 2,4,4'-TriBDE (BDE-28)                                              | 2.13 $\pm$ 0.09                            | 2.08 $\pm$ 0.07<br>0.0025 $\pm$ 0.0004    |
| 2,2',4,4'-TetraBDE (BDE-47)                                            | 0.23 $\pm$ 0.04                            | 0.245 $\pm$ 0.023                         |
| 2,2',3,4,4'-PentaBDE (BDE-99)                                          | 0.302 $\pm$ 0.030                          | 0.32 $\pm$ 0.04                           |
| 2,2',4,4',6-PentaBDE (BDE-100)                                         | 0.063 $\pm$ 0.005                          | 0.066 $\pm$ 0.007                         |
| 2,2',4,4',5,5'-HexaBDE (BDE-153)                                       | 0.047 $\pm$ 0.006                          | 0.044 $\pm$ 0.006                         |
| 2,2',4,4',5,6'-HexaBDE (BDE-154)                                       | 0.0257 $\pm$ 0.0026                        | 0.026 $\pm$ 0.004                         |
| 2,2',3,4,4',5,6'-HeptaBDE (BDE-183)                                    | 0.132 $\pm$ 0.012                          | 0.087 $\pm$ 0.008                         |
| 2,2',3,3',4,4',6,6'-OctaBDE + 2,2',3,4,4',5,6,6'-OctaBDE (BDE-197+204) | 0.076 $\pm$ 0.010                          | 0.052 $\pm$ 0.009                         |
| DecaBDE (BDE-209)                                                      | 0.65 $\pm$ 0.10                            | 0.78 $\pm$ 0.09                           |
| DecaBB (BB-209)                                                        | 0.63 $\pm$ 0.10                            | 0.74 $\pm$ 0.08                           |
| Sb                                                                     | (0.756 $\pm$ 0.025)                        | (0.713 $\pm$ 0.022)                       |

Values in brackets are not certified.

Availability: Brown glass bottle with 20 g granulate.

| Substance | Cat. No. ERMEC680k Polyethylene (low level) mg/kg |
|-----------|---------------------------------------------------|
| As        | 4.1 $\pm$ 0.5                                     |
| Br        | 96 $\pm$ 4                                        |
| Cd        | 19.6 $\pm$ 1.4                                    |
| Cl        | 102.2 $\pm$ 3.0                                   |
| Cr        | 20.2 $\pm$ 1.1                                    |
| Hg        | 4.64 $\pm$ 0.20                                   |

| Substance | Cat. No. ERMEC680k Polyethylene (low level) mg/kg |
|-----------|---------------------------------------------------|
| Pb        | 13.6 $\pm$ 0.5                                    |
| S         | 76 $\pm$ 4                                        |
| Sb        | 10.1 $\pm$ 1.6                                    |
| Sn        | (15.3 $\pm$ 2.8)                                  |
| Zn        | (137 $\pm$ 20)                                    |

Values in brackets are not certified.

Availability: Brown glass bottle with 100 g granulate.

### Cat. No. VDA0014 - Cd in polyethylene

A set of four certified reference materials for Cd in polyethylene (40.9 mg/kg, 75.9 mg/kg, 197.9 mg/kg and 407 mg/kg) has been certified by IRMM on behalf of VDA (Verband der Automobilindustrie e.V., Frankfurt). Information can be obtained from IRMM, Geel (B).

## 5.3 OTHERS

### Cat. No. IRMM471 - Cementite Grains in Carburised Pure Iron

|                                          | Certified value (g/kg) |
|------------------------------------------|------------------------|
| Carbon mass fraction in cementite grains | 66.9 $\pm$ 2.7         |

Availability: 4-5 mm long rod with 5 mm diameter.

## 6 MATERIALS RELATED TO ISOTOPIC MEASUREMENTS

### 6.1 CERTIFIED FOR ISOTOPE ABUNDANCE RATIO (AMOUNT RATIO)

| Cat. No. BCR123 Ethanol |                                                 |                                                 |                                                |
|-------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Parameter               | Ethanol H                                       | Ethanol M                                       | Ethanol L                                      |
| (D/H)I                  | $109.65 \times 10^{-6} \pm 0.20 \times 10^{-6}$ | $101.69 \times 10^{-6} \pm 0.17 \times 10^{-6}$ | $90.30 \times 10^{-6} \pm 0.18 \times 10^{-6}$ |
| (D/H)II                 | $119.76 \times 10^{-6} \pm 0.25 \times 10^{-6}$ | $130.94 \times 10^{-6} \pm 0.21 \times 10^{-6}$ | $122.20 \times 10^{-6} \pm 0.4 \times 10^{-6}$ |

| Cat. No. BCR123 Ethanol |               |  |               |  |               |  |
|-------------------------|---------------|--|---------------|--|---------------|--|
| Parameter               | Ethanol H     |  | Ethanol M     |  | Ethanol L     |  |
| R                       | 2.184 ± 0.005 |  | 2.575 ± 0.006 |  | 2.708 ± 0.009 |  |

Availability: Units of 3 sealed NMR tubes containing respectively H-, M-, and L-ethanols, to which the tetramethylurea internal standard and the  $C_6F_6$  lock substance are added. 15 mm (BCR123B) O.D. NMR tubes can be supplied.

| Parameter                                         | Unit  | Cat. No. BCR656<br>(96% ethanol) | Cat. No. BCR657<br>(Sugar) | Cat. No. BCR658<br>(Synthetic wine) | Cat. No. BCR659<br>(Synthetic wine) | Cat. No. BCR660<br>(Ethanol in water) |
|---------------------------------------------------|-------|----------------------------------|----------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
| (D/H)I by $^2H$ -NMR                              | ppm   | 102.84 ± 0.20                    |                            |                                     |                                     | 102.90 ± 0.16                         |
| (D/H)II by $^2H$ -NMR                             | ppm   | 132.07 ± 0.30                    |                            |                                     |                                     | 131.95 ± 0.23                         |
| R by $^2H$ -NMR                                   |       | 2.570 ± 0.005                    |                            |                                     |                                     | 2.567 ± 0.005                         |
| $\delta^{13}C_{VPDB}$ by IRMS                     | ‰     | -26.91 ± 0.07                    | -10.76 ± 0.04              |                                     |                                     | -26.72 ± 0.09                         |
| $\delta^{18}O_{VSMOW}$ of water from wine by IRMS | ‰     |                                  |                            | -7.19 ± 0.04                        | -7.18 ± 0.02                        |                                       |
| (D/H) <sub>w</sub> of water (IRMS)                | ppm   |                                  |                            |                                     |                                     | 148.68 ± 0.14                         |
| Alcoholic grade t <sub>D</sub>                    | w/w % | (94)                             |                            |                                     |                                     | 11.96 ± 0.06 <sup>1)</sup>            |

1) in v/v %

Value in brackets is not certified.

Availability: BCR656: Units of 25 mL of 96 % vol. neutral ethanol from wine in glass bottle;

BCR657: Units of approx. 1 g of dry glucose in a sealed amber vial;

BCR658: Units of 25 mL of synthetic wine solution in glass bottle;

BCR659: Units of 25 mL of synthetic wine solution in glass bottle;

BCR660: Units of 450 mL of aqueous ethanol solution in glass bottle.

| Code       | Description   | Amount ratios                   |  |  | Unit size |
|------------|---------------|---------------------------------|--|--|-----------|
|            |               | $n(^{41}Ca)/n(^{40}Ca)$         |  |  |           |
| ERMAE701/1 |               | 1.011 4(68) · 10 <sup>-6</sup>  |  |  |           |
| ERMAE701/2 |               | 1.023 5(69) · 10 <sup>-7</sup>  |  |  |           |
| ERMAE701/3 |               | 1.018 1(69) · 10 <sup>-8</sup>  |  |  |           |
| ERMAE701/4 | 0.6 M $HNO_3$ | 1.047 9(71) · 10 <sup>-9</sup>  |  |  |           |
| ERMAE701/5 | solution      | 1.052 0(71) · 10 <sup>-10</sup> |  |  | 25 mL     |
| ERMAE701/6 |               | 1.091 3(74) · 10 <sup>-11</sup> |  |  |           |
| ERMAE701/7 |               | 1.054 9(72) · 10 <sup>-12</sup> |  |  |           |
| ERMAE701/8 |               | 1.052 4(71) · 10 <sup>-13</sup> |  |  |           |

| Code    | Description            | Isotope amount fraction (-100) |            |            |            |            |            | Amount ratios             |                           |                           | Unit size    |
|---------|------------------------|--------------------------------|------------|------------|------------|------------|------------|---------------------------|---------------------------|---------------------------|--------------|
| IRMM009 | 0.2 M $HNO_3$ solution | $^{24}Mg$                      | $^{25}Mg$  | $^{26}Mg$  |            |            |            | $n(^{25}Mg)/n(^{24}Mg)$   | $n(^{26}Mg)/n(^{24}Mg)$   |                           | 4 mL         |
|         |                        | 78.992(25)                     | 10.003(9)  | 11.005(19) |            |            |            | 0.126 63(13)              | 0.139 32(26)              |                           |              |
| IRMM010 | Pt                     | $^{190}Pt$                     | $^{192}Pt$ | $^{194}Pt$ | $^{195}Pt$ | $^{196}Pt$ | $^{198}Pt$ | $n(^{190}Pt)/n(^{195}Pt)$ | $n(^{192}Pt)/n(^{195}Pt)$ | $n(^{194}Pt)/n(^{195}Pt)$ | 30 mg (wire) |
|         |                        | 0.011 7(11)                    | 0.782(17)  | 32.86(27)  | 33.78(16)  | 25.21(23)  | 7.356(82)  | 0.000 347(34)             | 0.023 15(48)              | 0.973(11)                 |              |
|         | metal                  |                                |            |            |            |            |            | $n(^{196}Pt)/n(^{195}Pt)$ | $n(^{198}Pt)/n(^{195}Pt)$ |                           |              |
|         |                        |                                |            |            |            |            |            | 0.746 4(82)               | 0.217 8(24)               |                           |              |
| IRMM011 | $H_3BO_3$ solution     | $^{10}B$                       | $^{11}B$   |            |            |            |            | $n(^{10}B)/n(^{11}B)$     |                           |                           | 1 g          |
|         |                        | 19.824(20)                     | 80.176(20) |            |            |            |            | 0.247 26(32)              |                           |                           |              |
| IRMM012 | 1 M HCl solution       | $^{50}Cr$                      | $^{52}Cr$  | $^{53}Cr$  | $^{54}Cr$  |            |            | $n(^{50}Cr)/n(^{52}Cr)$   | $n(^{53}Cr)/n(^{52}Cr)$   | $n(^{54}Cr)/n(^{52}Cr)$   | 5 mL         |
|         |                        | 4.345(9)                       | 83.789(2)  | 9.501(11)  | 2.365(5)   |            |            | 0.051 86(10)              | 0.113 39(15)              | 0.028 22(06)              |              |

|          |                                   |                    |                    |                    |  |  |  |                                           |                                           |  |  |       |
|----------|-----------------------------------|--------------------|--------------------|--------------------|--|--|--|-------------------------------------------|-------------------------------------------|--|--|-------|
| IRMM016  | $\text{Li}_2\text{CO}_3$ solution | ${}^6\text{Li}$    | ${}^7\text{Li}$    |                    |  |  |  | $n({}^6\text{Li})/n({}^7\text{Li})$       |                                           |  |  | 1 g   |
|          |                                   | 7.588 9(75)        | 92.411 1(75)       |                    |  |  |  | 0.082 121(87)                             |                                           |  |  |       |
| IRMM017  | Si solid                          | ${}^{28}\text{Si}$ | ${}^{29}\text{Si}$ | ${}^{30}\text{Si}$ |  |  |  | $n({}^{29}\text{Si})/n({}^{28}\text{Si})$ | $n({}^{30}\text{Si})/n({}^{28}\text{Si})$ |  |  | 50 mg |
|          |                                   | 92.228 77(86)      | 4.682 59(58)       | 3.088 64(70)       |  |  |  | 0.050 771 5(76)                           | 0.033 488 9(82)                           |  |  |       |
| IRMM018a | $\text{SiO}_2$ solid              | ${}^{28}\text{Si}$ | ${}^{29}\text{Si}$ | ${}^{30}\text{Si}$ |  |  |  | $n({}^{29}\text{Si})/n({}^{28}\text{Si})$ | $n({}^{30}\text{Si})/n({}^{28}\text{Si})$ |  |  | 5 g   |
|          |                                   | 92.220 36(49)      | 4.687 30(36)       | 3.092 34(37)       |  |  |  | 0.050 827 2(40)                           | 0.033 532 0(42)                           |  |  |       |

## 6.2 CERTIFIED FOR ISOTOPE AMOUNT CONTENT

| Cat. No. | Description                     | Isotope amount content                                           | Isotope enrichment                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit size |
|----------|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| IRMM610  | $\text{HNO}_3$ aqueous solution | 3.683 11 (88) $\mu\text{mol} {}^{10}\text{B}\cdot\text{g}^{-1}$  | $n({}^{10}\text{B})/n({}^{11}\text{B})=18.80$ (2)                                                                                                                                                                                                                                                                                                                                                                                  | 5 mL      |
| IRMM611  | $\text{HNO}_3$ aqueous solution | 4.025 (40) $\mu\text{mol} {}^{11}\text{B}\cdot\text{g}^{-1}$     | $n({}^{10}\text{B})/n({}^{11}\text{B})=0.247$ 26 (32)                                                                                                                                                                                                                                                                                                                                                                              | 5 mL      |
| IRMM615  | 0.5 M HCl solution              | 3.850 (14) $\mu\text{mol} {}^6\text{Li}\cdot\text{g}^{-1}$       | $n({}^6\text{Li})/n({}^7\text{Li})=21.897$ (44)                                                                                                                                                                                                                                                                                                                                                                                    | 5 mL      |
| IRMM618  | 0.5 M $\text{HNO}_3$ solution   | 112.13 (17) $\mu\text{mol} {}^{87}\text{Rb}\cdot\text{kg}^{-1}$  | $n({}^{85}\text{Rb})/n({}^{87}\text{Rb})=0.20$ 498 (24)                                                                                                                                                                                                                                                                                                                                                                            | 5 mL      |
| IRMM619  | 0.5 M $\text{HNO}_3$ solution   | 85.00 (24) $\mu\text{mol} {}^{85}\text{Rb}\cdot\text{kg}^{-1}$   | $n({}^{85}\text{Rb})/n({}^{87}\text{Rb})=2.593$ 0 (20)                                                                                                                                                                                                                                                                                                                                                                             | 5 mL      |
| IRMM620  | 4.5 M HCl solution              | 173.35 (16) $\mu\text{mol} {}^{57}\text{Fe}\cdot\text{kg}^{-1}$  | $n({}^{54}\text{Fe})/n({}^{57}\text{Fe})=<0.0001$<br>$n({}^{56}\text{Fe})/n({}^{57}\text{Fe})=0.025$ 39 (31)<br>$n({}^{58}\text{Fe})/n({}^{57}\text{Fe})=0.025$ 16 (18)                                                                                                                                                                                                                                                            | 5 mL      |
| IRMM621  | 1 M $\text{HNO}_3$ solution     | 97.35 (15) $\mu\text{mol} {}^{111}\text{Cd}\cdot\text{kg}^{-1}$  | $n({}^{106}\text{Cd})/n({}^{111}\text{Cd})=<0.000$ 05<br>$n({}^{108}\text{Cd})/n({}^{111}\text{Cd})=<0.000$ 05<br>$n({}^{110}\text{Cd})/n({}^{111}\text{Cd})=0.004$ 44 (42)<br>$n({}^{112}\text{Cd})/n({}^{111}\text{Cd})=0.021$ 74 (10)<br>$n({}^{113}\text{Cd})/n({}^{111}\text{Cd})=0.005$ 818 (56)<br>$n({}^{114}\text{Cd})/n({}^{111}\text{Cd})=0.010$ 875 (88)<br>$n({}^{116}\text{Cd})/n({}^{111}\text{Cd})=0.001$ 629 (44) | 4 mL      |
| IRMM622  | 1 M HCl solution                | 9.739 (18) $\mu\text{mol} {}^{111}\text{Cd}\cdot\text{kg}^{-1}$  | $n({}^{106}\text{Cd})/n({}^{111}\text{Cd})=<0.000$ 05<br>$n({}^{108}\text{Cd})/n({}^{111}\text{Cd})=<0.000$ 05<br>$n({}^{110}\text{Cd})/n({}^{111}\text{Cd})=0.004$ 44 (42)<br>$n({}^{112}\text{Cd})/n({}^{111}\text{Cd})=0.021$ 74 (10)<br>$n({}^{113}\text{Cd})/n({}^{111}\text{Cd})=0.005$ 818 (56)<br>$n({}^{114}\text{Cd})/n({}^{111}\text{Cd})=0.010$ 875 (88)<br>$n({}^{116}\text{Cd})/n({}^{111}\text{Cd})=0.001$ 629 (44) | 4 mL      |
| IRMM624  | 1 M HCl solution                | 174.84 (42) $\mu\text{mol} {}^{50}\text{Cr}\cdot\text{kg}^{-1}$  | $n({}^{52}\text{Cr})/n({}^{50}\text{Cr})=0.066$ 41 (50)<br>$n({}^{53}\text{Cr})/n({}^{50}\text{Cr})=0.000$ 323 (64)<br>$n({}^{54}\text{Cr})/n({}^{50}\text{Cr})=0.000$ 11 (11)                                                                                                                                                                                                                                                     | 5 mL      |
| IRMM625  | 1 M $\text{HNO}_3$ solution     | 144.233 (90) $\mu\text{mol} {}^{52}\text{Cr}\cdot\text{kg}^{-1}$ | $n({}^{50}\text{Cr})/n({}^{52}\text{Cr})=0.051$ 85 (20)<br>$n({}^{53}\text{Cr})/n({}^{52}\text{Cr})=0.113$ 33 (38)<br>$n({}^{54}\text{Cr})/n({}^{52}\text{Cr})=0.028$ 35 (34)                                                                                                                                                                                                                                                      | 5 mL      |
| IRMM632  | 1 M $\text{HNO}_3$ solution     | 0.096 84 (41) $\mu\text{mol} {}^{65}\text{Cu}\cdot\text{g}^{-1}$ | $n({}^{63}\text{Cu})/n({}^{65}\text{Cu})=0.002$ 892 1 (92)                                                                                                                                                                                                                                                                                                                                                                         | 5 mL      |
| ERMAE633 | 1 M $\text{HNO}_3$ solution     | 5.998 (36) $\mu\text{mol} {}^{63}\text{Cu}\cdot\text{g}^{-1}$    | $n({}^{65}\text{Cu})/n({}^{63}\text{Cu})=0.445$ 63 (42)                                                                                                                                                                                                                                                                                                                                                                            | 4 - 5 mL  |
| IRMM634  | 1.8 M HCl solution              | 163.61 (38) $\mu\text{mol} {}^{56}\text{Fe}\cdot\text{kg}^{-1}$  | $n({}^{54}\text{Fe})/n({}^{56}\text{Fe})=0.063$ 70 (27)<br>$n({}^{57}\text{Fe})/n({}^{56}\text{Fe})=0.023$ 096 (72)<br>$n({}^{58}\text{Fe})/n({}^{56}\text{Fe})=0.003$ 071 (29)                                                                                                                                                                                                                                                    | 5 mL      |
| ERMAE637 | 0.2 M $\text{HNO}_3$ solution   | 0.791 37(30) $\mu\text{mol} {}^{24}\text{Mg}\cdot\text{g}^{-1}$  | $n({}^{26}\text{Mg})/n({}^{24}\text{Mg})=0.139$ 68 (32)<br>$n({}^{25}\text{Mg})/n({}^{24}\text{Mg})=0.126$ 86 (18)                                                                                                                                                                                                                                                                                                                 | 5 mL      |
| ERMAE638 | 0.1 M $\text{HNO}_3$ solution   | 0.857 4 (34) $\mu\text{mol} {}^{26}\text{Mg}\cdot\text{g}^{-1}$  | $n({}^{24}\text{Mg})/n({}^{26}\text{Mg})=0.003$ 104 (26)<br>$n({}^{25}\text{Mg})/n({}^{26}\text{Mg})=0.001$ 084 (11)                                                                                                                                                                                                                                                                                                               | 5 mL      |
| ERMAE639 | 0.5 M HCl solution              | 11.891 (50) $\mu\text{mol} {}^{202}\text{Hg}\cdot\text{g}^{-1}$  | $n({}^{196}\text{Hg})/n({}^{202}\text{Hg})=0.004$ 972 (46)<br>$n({}^{198}\text{Hg})/n({}^{202}\text{Hg})=0.330$ 6 (21)<br>$n({}^{199}\text{Hg})/n({}^{202}\text{Hg})=0.561$ 9 (28)<br>$n({}^{200}\text{Hg})/n({}^{202}\text{Hg})=0.770$ 5 (28)<br>$n({}^{201}\text{Hg})/n({}^{202}\text{Hg})=0.441$ 26 (88)<br>$n({}^{204}\text{Hg})/n({}^{202}\text{Hg})=0.230$ 27 (75)                                                           | 5 mL      |

| Cat. No.        | Description                   | Isotope amount content                                          | Isotope enrichment                                                                                                                                                                                                                                                                                                                                                       | Unit size |
|-----------------|-------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>ERMAE640</b> | 0.5 M HCl solution            | 14.71 (11) nmol $^{202}\text{Hg}\cdot\text{g}^{-1}$             | $n(^{196}\text{Hg})/n(^{202}\text{Hg})=0.000\ 018\ 09\ (38)$<br>$n(^{198}\text{Hg})/n(^{202}\text{Hg})=0.000\ 623\ (11)$<br>$n(^{199}\text{Hg})/n(^{202}\text{Hg})=0.001\ 603\ (16)$<br>$n(^{200}\text{Hg})/n(^{202}\text{Hg})=0.005\ 499\ (34)$<br>$n(^{201}\text{Hg})/n(^{202}\text{Hg})=0.013\ 351\ (52)$<br>$n(^{204}\text{Hg})/n(^{202}\text{Hg})=0.002\ 595\ (21)$ | 5 mL      |
| <b>ERMAE641</b> | Cl in water                   | 18.959 (15) $\mu\text{mol }^{35}\text{Cl}\cdot\text{g}^{-1}$    | $n(^{37}\text{Cl})/n(^{35}\text{Cl})=0.319\ 77\ (83)$                                                                                                                                                                                                                                                                                                                    | 4 - 5 mL  |
| <b>ERMAE642</b> | Cl in water                   | 4.375 (26) $\mu\text{mol }^{37}\text{Cl}\cdot\text{g}^{-1}$     | $n(^{35}\text{Cl})/n(^{37}\text{Cl})=0.019\ 14\ (48)$                                                                                                                                                                                                                                                                                                                    | 4 - 5 mL  |
| <b>IRMM643</b>  | 2.8 M $\text{HNO}_3$ solution | 334.33 (84) $\mu\text{mol }^{32}\text{S}\cdot\text{kg}^{-1}$    | $n(^{33}\text{S})/n(^{32}\text{S})=0.007\ 877\ 6\ (58)$<br>$n(^{34}\text{S})/n(^{32}\text{S})=0.044\ 149\ 3\ (78)$<br>$n(^{36}\text{S})/n(^{32}\text{S})=0.000\ 153\ 40\ (94)$                                                                                                                                                                                           | 5 mL      |
| <b>IRMM644</b>  | 3.2 M $\text{HNO}_3$ solution | 326.28 (80) $\mu\text{mol }^{32}\text{S}\cdot\text{kg}^{-1}$    | $n(^{33}\text{S})/n(^{32}\text{S})=0.007\ 969\ 8\ (70)$<br>$n(^{34}\text{S})/n(^{32}\text{S})=0.045\ 162\ 2\ (82)$<br>$n(^{36}\text{S})/n(^{32}\text{S})=0.000\ 170\ 0\ (58)$                                                                                                                                                                                            | 5 mL      |
| <b>IRMM645</b>  | 2.8 M $\text{HNO}_3$ solution | 371.96 (57) $\mu\text{mol }^{32}\text{S}\cdot\text{kg}^{-1}$    | $n(^{33}\text{S})/n(^{32}\text{S})=0.007\ 747\ 6\ (38)$<br>$n(^{34}\text{S})/n(^{32}\text{S})=0.042\ 747\ 3\ (62)$<br>$n(^{36}\text{S})/n(^{32}\text{S})=0.000\ 145\ 1\ (42)$                                                                                                                                                                                            | 5 mL      |
| <b>IRMM646</b>  | 2.8 M $\text{HNO}_3$ solution | 4586 (27) $\mu\text{mol }^{34}\text{S}\cdot\text{kg}^{-1}$      | $n(^{32}\text{S})/n(^{34}\text{S})=0.038\ 314\ 9\ (31)$<br>$n(^{33}\text{S})/n(^{34}\text{S})=0.000\ 470\ 88\ (15)$<br>$n(^{36}\text{S})/n(^{34}\text{S})=0.000\ 018\ 1\ (37)$                                                                                                                                                                                           | 5 mL      |
| <b>ERMAE647</b> | 1 M $\text{HNO}_3$ solution   | 134.974 (73) $\mu\text{mol }^{63}\text{Cu}\cdot\text{g}^{-1}$   | $n(^{65}\text{Cu})/n(^{63}\text{Cu})=0.445\ 60\ (74)$                                                                                                                                                                                                                                                                                                                    | 4 mL      |
| <b>ERMAE649</b> | 1 M $\text{HNO}_3$ solution   | 0.836 88 (27) $\mu\text{mol }^{205}\text{Tl}\cdot\text{g}^{-1}$ | $n(^{203}\text{Tl})/n(^{205}\text{Tl})=0.418\ 91\ (18)$                                                                                                                                                                                                                                                                                                                  | 4 - 5 mL  |
| <b>IRMM651</b>  | 0.5 M $\text{HNO}_3$ solution | 0.077 506 (30) $\mu\text{mol }^{64}\text{Zn}\cdot\text{g}^{-1}$ | $n(^{66}\text{Zn})/n(^{64}\text{Zn})=0.557\ 17\ (30)$<br>$n(^{67}\text{Zn})/n(^{64}\text{Zn})=0.080\ 702\ (34)$<br>$n(^{68}\text{Zn})/n(^{64}\text{Zn})=0.366\ 27\ (12)$<br>$n(^{70}\text{Zn})/n(^{64}\text{Zn})=0.011\ 981\ (22)$                                                                                                                                       | 5 mL      |
| <b>IRMM652</b>  | 0.5 M $\text{HNO}_3$ solution | 0.156 000 (50) $\mu\text{mol }^{64}\text{Zn}\cdot\text{g}^{-1}$ | $n(^{66}\text{Zn})/n(^{64}\text{Zn})=0.004\ 107\ 3\ (59)$<br>$n(^{67}\text{Zn})/n(^{64}\text{Zn})=0.000\ 499\ 87\ (96)$<br>$n(^{68}\text{Zn})/n(^{64}\text{Zn})=0.002\ 029\ 5\ (23)$<br>$n(^{70}\text{Zn})/n(^{64}\text{Zn})=0.000\ 052\ 76\ (34)$                                                                                                                       | 5 mL      |
| <b>IRMM653</b>  | 0.5 M $\text{HNO}_3$ solution | 0.138 014 (60) $\mu\text{mol }^{67}\text{Zn}\cdot\text{g}^{-1}$ | $n(^{64}\text{Zn})/n(^{67}\text{Zn})=0.013\ 191\ 5\ (81)$<br>$n(^{66}\text{Zn})/n(^{67}\text{Zn})=0.024\ 551\ 6\ (70)$<br>$n(^{68}\text{Zn})/n(^{67}\text{Zn})=0.051\ 086\ (36)$<br>$n(^{70}\text{Zn})/n(^{67}\text{Zn})=0.000\ 527\ 8\ (18)$                                                                                                                            | 5 mL      |
| <b>IRMM654</b>  | 0.5 M $\text{HNO}_3$ solution | 0.146 098 (48) $\mu\text{mol }^{68}\text{Zn}\cdot\text{g}^{-1}$ | $n(^{64}\text{Zn})/n(^{68}\text{Zn})=0.00\ 489\ 4\ (38)$<br>$n(^{66}\text{Zn})/n(^{68}\text{Zn})=0.003\ 186\ 8\ (46)$<br>$n(^{68}\text{Zn})/n(^{68}\text{Zn})=0.001\ 411\ 3\ (17)$<br>$n(^{70}\text{Zn})/n(^{68}\text{Zn})=0.000\ 194\ 98\ (78)$                                                                                                                         | 5 mL      |
| <b>IRMM3702</b> | 0.5 M $\text{HNO}_3$ solution | 1.512 (30) $\mu\text{mol }^{64}\text{Zn}\cdot\text{g}^{-1}$     | $n(^{66}\text{Zn})/n(^{64}\text{Zn})=0.563\ 97\ (30)$<br>$n(^{67}\text{Zn})/n(^{64}\text{Zn})=0.082\ 166\ (35)$<br>$n(^{68}\text{Zn})/n(^{64}\text{Zn})=0.375\ 19\ (16)$<br>$n(^{70}\text{Zn})/n(^{64}\text{Zn})=0.012\ 418\ (23)$                                                                                                                                       | 3 mL      |

# INDEX

## NUMERICAL LIST

| Cat. No.     | DESIGNATION                                                            | PAGE NO. |
|--------------|------------------------------------------------------------------------|----------|
| ERMAC057     | AFLATOXIN B1 IN ACETONITRILE                                           | 28       |
| ERMAC058     | AFLATOXIN B2 IN ACETONITRILE                                           | 29       |
| ERMAC059     | AFLATOXIN G1 IN ACETONITRILE                                           | 29       |
| ERMAC060     | AFLATOXIN G2 IN ACETONITRILE                                           | 29       |
| ERMAC213     | PAHs IN ACETONITRILE / TOLUENE                                         | 29       |
| ERMAC699     | ZEARALENONE IN ACETONITRILE                                            | 14       |
| ERMAD149     | THROMBOPLASTIN RABBIT (prothrombin time)                               | 28       |
| ERMAD413     | PLASMID DNA FRAGMENTS OF MON 810 MAIZE                                 | 55       |
| ERMAD415     | PLASMID DNA FRAGMENTS OF NK603 MAIZE                                   | 30-31    |
| ERMAD425     | PLASMID DNA FRAGMENTS OF 356043 SOYBEAN                                | 31       |
| ERMAD427     | PLASMID DNA FRAGMENTS OF 98140 MAIZE                                   | 33       |
| ERMAD452     | γ-GLUTAMYLTRANSFERASE (catalytic concentration)                        | 34       |
| ERMAD454     | ALANINE AMINOTRANSFERASE (catalytic concentration)                     | 54       |
| ERMAD455     | CREATINE KINASE (CK-MB iso-enzyme) (catalytic concentration)           | 54       |
| ERMAD457IFCC | ASPARTATE TRANSAMINASE (AST)                                           | 54       |
| ERMAD623     | BCR-ABL pDNA CALIBRANT                                                 | 54       |
| ERMAE633     | COPPER (natural) spike, nitrate solution                               | 54       |
| ERMAE637     | MAGNESIUM (natural) spike, nitrate solution                            | 68       |
| ERMAE638     | MAGNESIUM-26 spike, nitrate solution                                   | 68       |
| ERMAE639     | MERCURY (natural) spike, chloride solution                             | 68       |
| ERMAE640     | MERCURY-202 spike, chloride solution                                   | 68       |
| ERMAE641     | CHLORIDE (natural) spike, chloride solution                            | 69       |
| ERMAE642     | CHLORIDE-37 spike, chloride solution                                   | 69       |
| ERMAE647     | COPPER-63, nitrate solution                                            | 69       |
| ERMAE649     | THALLIUM (natural) spike, nitrate solution                             | 69       |
| ERMAE701     | CALCIUM-41 isotopic, nitrate solution (set of 8 units)                 | 67       |
| ERMBB124     | PORK MUSCLE                                                            | 49       |
| ERMBB130     | PORK MUSCLE                                                            | 48       |
| ERMBB184     | BOVINE MUSCLE (trace elements)                                         | 40       |
| ERMBB186     | PIG KIDNEY (trace elements)                                            | 40       |
| ERMBB350     | FISH OIL                                                               | 37       |
| ERMBB384     | PORK MUSCLE                                                            | 41, 44   |
| ERMBB386     | BOVINE URINE (diethylstilboestrol, dienoestrol and hexoestrol) (blank) | 48       |
| ERMBB389     | BOVINE URINE (diethylstilboestrol, dienoestrol and hexoestrol)         | 48       |
| ERMBB422     | FISH MUSCLE (trace elements)                                           | 40       |
| ERMBB430     | PORK FAT (pesticides)                                                  | 38       |
| ERMBB444     | NATURAL PORK FAT (blank)                                               | 37       |
| ERMBB445     | SPIKED PORK FAT (very low level)                                       | 37       |
| ERMBB446     | SPIKED PORK FAT (low level)                                            | 37       |
| ERMBC190     | RAPESEED (colza) (S, total glucosinolate, medium level)                | 38       |
| ERMBC211     | RICE (As species)                                                      | 24       |
| ERMBC366     | RAPESEED (colza) (S, total glucosinolate, low level)                   | 38       |

| Cat. No.  | DESIGNATION                                               | PAGE NO. |
|-----------|-----------------------------------------------------------|----------|
| ERMBC367  | RAPESEED (colza) (S, total glucosinolate, high level)     | 38       |
| ERMBC381  | RYE FLOUR                                                 | 41, 44   |
| ERMBC382  | WHEAT FLOUR                                               | 41, 44   |
| ERMBC514  | HARICOTS BEANS (dietary fibre)                            | 45       |
| ERMBC515  | CARROT (dietary fibre)                                    | 45       |
| ERMBC516  | APPLE (dietary fibre)                                     | 45       |
| ERMBC517  | FULL FAT SOYA (dietary fibre)                             | 45       |
| ERMBC716  | MAIZE                                                     | 39       |
| ERMBC717  | MAIZE                                                     | 39       |
| ERMBD150  | SKIMMED MILK POWDER (trace elements)                      | 40       |
| ERMBD151  | SKIMMED MILK POWDER (trace elements)                      | 40       |
| ERMBD273  | TOASTED BREAD                                             | 49       |
| ERMBD282  | WHOLE MILK POWDER (aflatoxin M1, zero level)              | 39       |
| ERMBD283  | WHOLE MILK POWDER (aflatoxin M1, low level)               | 39       |
| ERMBD284  | WHOLE MILK POWDER (aflatoxin M1, high level)              | 39       |
| ERMBD518  | BRAN BREAKFAST CEREAL (dietary fibre)                     | 45       |
| ERMBD600  | WHOLE MILK POWDER (vitamins)                              | 43       |
| ERMBE375  | COMPOUND FEEDINGSTUFF (very low level)                    | 39       |
| ERMBE376  | COMPOUND FEEDINGSTUFF (high level)                        | 39       |
| ERMBF410k | GENETICALLY MODIFIED ROUNDUP READY SOYA                   | 29       |
| ERMBF411  | GENETICALLY MODIFIED Bt-176 MAIZE                         | 30       |
| ERMBF412  | GENETICALLY MODIFIED Bt-11 MAIZE                          | 30       |
| ERMBF413k | GENETICALLY MODIFIED MON 810 MAIZE                        | 30       |
| ERMBF414  | GENETICALLY MODIFIED GA21 MAIZE                           | 31       |
| ERMBF415  | GENETICALLY MODIFIED NK603 MAIZE                          | 31       |
| ERMBF416  | GENETICALLY MODIFIED MON 863 MAIZE                        | 31-32    |
| ERMBF417  | GENETICALLY MODIFIED MON 863 x MON 810 MAIZE              | 32       |
| ERMBF418  | GENETICALLY MODIFIED 1507 MAIZE                           | 32       |
| ERMBF419  | GENETICALLY MODIFIED H7-1 SUGAR BEET                      | 32       |
| ERMBF420  | GENETICALLY MODIFIED 3272 MAIZE                           | 32       |
| ERMBF421  | GENETICALLY MODIFIED EH92-527-1 POTATO                    | 32       |
| ERMBF422  | GENETICALLY MODIFIED 281-24-236 X 3006-210-23 COTTON SEED | 33       |
| ERMBF423  | GENETICALLY MODIFIED MIR604 MAIZE                         | 33       |
| ERMBF424  | GENETICALLY MODIFIED 59122 MAIZE                          | 33       |
| ERMBF425  | GENETICALLY MODIFIED SOYA 356043                          | 33       |
| ERMBF426  | GENETICALLY MODIFIED SOYA 305423                          | 34       |
| ERMBF427  | GENETICALLY MODIFIED 98140 MAIZE                          | 34       |
| ERMBF428  | GENETICALLY MODIFIED GHB119 COTTON                        | 34       |
| ERMBF429  | GENETICALLY MODIFIED T304-40 COTTON                       | 34       |
| ERMBF430  | GENETICALLE MODIFIED AM04-1020 POTATO                     | 35       |
| ERMBF431  | GENETICALLE MODIFIED AV43-6-G7 POTATO                     | 35       |
| ERMBF432  | GENETICALLY MODIFIED SOYA DAS-68416-4                     | 35       |
| ERMBF433  | GENETICALLY MODIFIED DAS-40278-9 MAIZE                    | 35       |
| ERMBF434  | GENETICALLY MODIFIED 73496 RAPESEED                       | 35-36    |

| Cat. No.      | DESIGNATION                                                | PAGE NO. |
|---------------|------------------------------------------------------------|----------|
| ERMBF435      | GENETICALLY MODIFIED PH05-026-0048 POTATO                  | 36       |
| ERMBF436      | GENETICALLY MODIFIED DAS-44406-6 SOYA                      | 36       |
| ERMBF437      | GENETICALLY MODIFIED DAS-81419-2 SOYA                      | 36       |
| ERMCA408      | SIMULATED RAINWATER (major components)                     | 20       |
| ERMCA615      | GROUND WATER                                               | 21       |
| ERMCA616      | GROUND WATER                                               | 21       |
| ERMCC141      | LOAM SOIL                                                  | 15       |
| ERMCC580      | ESTUARINE SEDIMENT (Hg, methylmercury)                     | 16, 23   |
| ERMCC690      | CALCAREOUS SOIL                                            | 15-16    |
| ERMCD200      | BLADDERWRACK ( <i>Fucus vesiculosus</i> ) (trace elements) | 19       |
| ERMCD281      | RYE GRASS                                                  | 18       |
| ERMCE196      | BOVINE BLOOD (Pb, Cd)                                      | 51       |
| ERMCE278k     | MUSSEL TISSUE (elements)                                   | 19       |
| ERMCE464      | TUNA FISH (total and methylmercury)                        | 20       |
| ERMCE477      | MUSSEL TISSUE (butyltins)                                  | 24       |
| ERMCZ100      | FINE DUST (PM <sub>10</sub> -like) (PAHs)                  | 24       |
| ERMCZ120      | FINE DUST (PM <sub>10</sub> -like) (elements)              | 17       |
| ERMDA192      | HUMAN SERUM (cortisol unspiked)                            | 51       |
| ERMDA193      | HUMAN SERUM (cortisol spiked)                              | 51       |
| ERMDA347      | HUMAN SERUM (progesterone)                                 | 51       |
| ERMDA451      | CORTISOL REFERENCE SERUM PANEL                             | 50-51    |
| ERMDA470kIFCC | HUMAN SERUM (proteins)                                     | 53       |
| ERMDA471IFCC  | HUMAN SERUM (cystatin C)                                   | 53       |
| ERMDA474IFCC  | HUMAN SERUM (CRP)                                          | 53       |
| ERMDB001      | HUMAN HAIR (trace elements)                                | 52       |
| ERMEB322      | UNALLOYED ZINC (trace elements)                            | 63       |
| ERMEB323      | UNALLOYED ZINC (trace elements)                            | 63       |
| ERMEB324      | UNALLOYED ZINC (trace elements)                            | 63       |
| ERMEB325      | UNALLOYED ZINC (trace elements)                            | 63       |
| ERMEC590      | POLYETHYLENE (LDPE)                                        | 66       |
| ERMEC591      | POLYPROPYLENE (PP)                                         | 66       |
| ERMEC680k     | POLYETHYLENE (low level)                                   | 66       |
| ERMEF001      | BIODIESEL                                                  | 59-60    |
| ERMEF104      | GAS OIL (0.1019 % S)                                       | 64       |
| ERMEF211      | PETROL                                                     | 64       |
| ERMEF317      | GAS OIL (Solvent Yellow 124)                               | 65       |
| ERMEF318      | GAS OIL (Solvent Yellow 124)                               | 65       |
| ERMEF411      | HARD COAL                                                  | 55       |
| ERMEF412      | BROWN COAL                                                 | 55       |
| ERMEF413      | FURNACE COKE                                               | 55       |
| ERMEF671      | GAS OIL (0.0452 % S)                                       | 64       |
| ERMEF672      | GAS OIL (0.0203 % S)                                       | 64       |
| ERMFD100      | COLLOIDAL SILICA                                           | 58-59    |
| ERMFD102      | COLLOIDAL SILICA IN AQUEOUS SOLUTION                       | 59       |

| Cat. No.   | DESIGNATION                                           | PAGE NO. |
|------------|-------------------------------------------------------|----------|
| ERMFD304   | COLLOIDAL SILICA                                      | 59       |
| BCR010     | TIN ORE CONCENTRATE (Sn)                              | 60       |
| BCR017A, B | COPPER (S, P)                                         | 62       |
| BCR022A, B | ELECTROLYTIC TOUGH PITCH COPPER (O)                   | 62       |
| BCR024B, C | TITANIUM (O, N)                                       | 62       |
| BCR032     | MOROCCAN PHOSPHATE ROCK (trace elements)              | 60       |
| BCR033     | SUPERPHOSPHATE (various parameters)                   | 60       |
| BCR038     | FLY ASH FROM PULVERISED COAL (trace elements)         | 17       |
| BCR046     | BENZO[b]CHRYSENE (purity)                             | 5        |
| BCR047     | BENZO[b]FLUORANTHENE (purity)                         | 5        |
| BCR048R    | BENZO[k]FLUORANTHENE (purity)                         | 5        |
| BCR049     | BENZO[j]FLUORANTHENE (purity)                         | 5        |
| BCR050     | BENZO[e]PYRENE (purity)                               | 5        |
| BCR052     | BENZO[ghi]PERYLENE (purity)                           | 5        |
| BCR054R    | COPPER (O)                                            | 62       |
| BCR058     | CONTINUOUS CAST COPPER (O)                            | 62       |
| BCR059A, B | Ti 6AL 4V ALLOY (O)                                   | 62       |
| BCR066     | QUARTZ (particle size 0.35 – 3.50 microns)            | 57       |
| BCR067     | QUARTZ (particle size 2.40 – 32.00 microns)           | 57       |
| BCR068     | QUARTZ (particle size 160 – 630 microns)              | 57       |
| BCR069     | QUARTZ (particle size 14 – 90 microns)                | 57       |
| BCR070     | QUARTZ (1.20 – 20.00 microns)                         | 57       |
| BCR077R    | 1-METHYLCHRYSENE (purity)                             | 5        |
| BCR078R    | 2-METHYLCHRYSENE (purity)                             | 5        |
| BCR079R    | 3-METHYLCHRYSENE (purity)                             | 5        |
| BCR080R    | 4-METHYLCHRYSENE (purity)                             | 5        |
| BCR081R    | 5-METHYLCHRYSENE (purity)                             | 5        |
| BCR089     | TiAl6V4 (Al, V)                                       | 64       |
| BCR090A, B | TITANIUM (impurities)                                 | 64       |
| BCR091     | ANTHANTHRENE (purity)                                 | 5        |
| BCR092     | 10-AZABENZO[a]PYRENE (purity)                         | 5        |
| BCR093R    | 1-METHYLBENZ[a]ANTHRACENE (purity)                    | 5        |
| BCR094     | DIBENZ[a,c]ANTHRACENE (purity)                        | 5        |
| BCR095     | DIBENZ[a,j]ANTHRACENE (purity)                        | 5        |
| BCR096     | DIBENZO[a,l]PYRENE ( mylas)                           | 5        |
| BCR097     | BENZO[a]FLUORANTHENE (purity)                         | 5        |
| BCR102     | TUNGSTEN CARBIDE POWDER (O)                           | 62       |
| BCR105     | GAS OIL (0.363 % S)                                   | 64       |
| BCR106     | GAS OIL (0.502 % S)                                   | 64       |
| BCR107     | GAS OIL (1.040 % S)                                   | 64       |
| BCR109     | ZINC ORE CONCENTRATE (trace elements)                 | 65       |
| BCR113     | POTASSIUM CHLORIDE FERTILIZER (elemental composition) | 60       |
| BCR114     | POTASSIUM SULPHATE FERTILIZER (elemental composition) | 60-61    |
| BCR115     | ANIMAL FEED (Organochlorine pesticides)               | 38       |

| Cat. No.   | DESIGNATION                                                                 | PAGE NO. |
|------------|-----------------------------------------------------------------------------|----------|
| BCR116     | LIMESTONE POWDERS (for shear testing)                                       | 56       |
| BCR121     | WHOLEMEAL FLOUR (vitamins)                                                  | 43       |
| BCR122     | MARGARINE (vitamins)                                                        | 43       |
| BCR123A, B | 3 REFERENCE ETHANOLS (H, M, L) (for SNIF-NMR)                               | 27, 66   |
| BCR126A    | LEAD GLASS (composition/refractive index)                                   | 61       |
| BCR129     | HAY POWDER (elements)                                                       | 18       |
| BCR130     | QUARTZ (particle size 50 – 220 microns)                                     | 57       |
| BCR131     | QUARTZ (particle size 480 – 1800 microns)                                   | 57       |
| BCR132     | QUARTZ (particle size 1400 – 5000 microns)                                  | 57       |
| BCR133     | DIBENZO[a,e]PYRENE ( mylas)                                                 | 5        |
| BCR134     | BENZO[c]PHENANTHRENE (purity)                                               | 5        |
| BCR136R    | BENZO[b]NAPHTHO[2,3-d]THIOPHENE (purity)                                    | 5        |
| BCR137R    | BENZO[b]NAPHTHO[1,2-d]THIOPHENE (purity)                                    | 5        |
| BCR138     | DIBENZO[a,h]ANTHRACENE (purity)                                             | 5        |
| BCR139     | BENZO[ghi]FLUORANTHENE (purity)                                             | 5        |
| BCR140     | BENZO[c]CHRYSENE (purity)                                                   | 5        |
| BCR142R    | LIGHT SANDY SOIL (trace elements)                                           | 15       |
| BCR143R    | SEWAGE SLUDGE AMENDED SOIL (trace elements)                                 | 15       |
| BCR145R    | SEWAGE SLUDGE (mixed origin) (trace elements)                               | 16       |
| BCR146R    | SEWAGE SLUDGE (industrial origin) (trace elements)                          | 16       |
| BCR152     | DIBENZ[a,l]ACRIDINE ( mylas)                                                | 5        |
| BCR153R    | DIBENZ[a,h]ACRIDINE (purity)                                                | 5        |
| BCR154     | DIBENZ[a,j]ACRIDINE (purity)                                                | 5        |
| BCR155     | DIBENZ[a,c]ACRIDINE ( mylas)                                                | 5        |
| BCR156R    | DIBENZ[c,h]ACRIDINE (purity)                                                | 5        |
| BCR157     | BENZ[a]ACRIDINE (purity)                                                    | 5        |
| BCR158     | BENZ[c]ACRIDINE (purity)                                                    | 5        |
| BCR159     | DIBENZO[a,h]PYRENE ( mylas)                                                 | 5        |
| BCR160R    | FLUORANTHENE (purity)                                                       | 6        |
| BCR162R    | SOYA-MAIZE OIL BLEND (fatty acid profile)                                   | 42       |
| BCR163     | BEEF-PORK FAT BLEND (fatty acid profile)                                    | 42       |
| BCR165     | LATEX SPHERES (particle diameter 2 microns)                                 | 50       |
| BCR166     | LATEX SPHERES (particle diameter 4.8 microns)                               | 50       |
| BCR167     | LATEX SPHERES (particle diameter 9.6 microns)                               | 50       |
| BCR168     | PICENE (purity)                                                             | 6        |
| BCR169     | ALPHA ALUMINA (0.10 m <sup>2</sup> /g) (nitrogen BET specific surface area) | 57       |
| BCR170     | ALPHA ALUMINA (1.05 m <sup>2</sup> /g) (nitrogen BET specific surface area) | 57       |
| BCR171     | ALUMINA (2.95 m <sup>2</sup> /g) (nitrogen BET specific surface area)       | 57       |
| BCR172     | QUARTZ (2.50 m <sup>2</sup> /g) (nitrogen BET specific surface area)        | 57       |
| BCR173     | TITANIA (8.23 m <sup>2</sup> /g) (nitrogen BET specific surface area)       | 57       |
| BCR175     | TUNGSTEN (0.18 m <sup>2</sup> /g) (nitrogen BET specific surface area)      | 57       |
| BCR176R    | FLY ASH (trace elements)                                                    | 17       |
| BCR177R    | PYRENE (purity)                                                             | 6        |
| BCR178     | CALCIUM AMMONIUM NITRATE FERTILIZER (composition)                           | 61       |

| Cat. No.   | DESIGNATION                                                          | PAGE NO. |
|------------|----------------------------------------------------------------------|----------|
| BCR179     | UREA FERTILIZER (composition)                                        | 61       |
| BCR185R    | BOVINE LIVER (trace elements)                                        | 40       |
| BCR187     | NATURAL MILK POWDER (pesticides)                                     | 38       |
| BCR188     | SPIKED MILK POWDER (pesticides)                                      | 38       |
| BCR191     | BROWN BREAD (trace elements)                                         | 40       |
| BCR261T    | TANTALUM PENTOXIDE ON TANTALUM FOIL                                  | 58       |
| BCR262R    | DEFATTED PEANUT MEAL (aflatoxin B1, blank)                           | 39       |
| BCR263R    | DEFATTED PEANUT MEAL (aflatoxin B1, medium level)                    | 39       |
| BCR264     | DEFATTED PEANUT MEAL (aflatoxin B1, high level)                      | 39       |
| BCR265     | DIBENZO[a,e]FLUORANTHENE (mylas)                                     | 6        |
| BCR266     | 7H-DIBENZO (c,g) CARBAZOLE (purity)                                  | 6        |
| BCR267     | INDENO[1,2,3-cd]FLUORANTHENE (purity)                                | 6        |
| BCR269     | CHRYSENE (purity)                                                    | 6        |
| BCR270     | TRIPHENYLENE (purity)                                                | 6        |
| BCR271     | BENZ[a]ANTHRACENE (purity)                                           | 6        |
| BCR272     | CORONENE (purity)                                                    | 6        |
| BCR273     | SINGLE CELL PROTEIN (major elements)                                 | 41       |
| BCR274     | SINGLE CELL PROTEIN (trace elements)                                 | 41       |
| BCR275     | ZIRCALOY (C, N, O)                                                   | 62       |
| BCR276     | ZIRCALOY (C, N, O)                                                   | 62       |
| BCR286A, B | ELECTROLYTICALLY REFINED LEAD (trace elements)                       | 62       |
| BCR287A, B | THERMALLY REFINED LEAD (trace elements)                              | 62       |
| BCR288B    | LEAD WITH ADDED IMPURITIES (trace elements)                          | 62       |
| BCR289     | 2,4'-DICHLOROBIPHENYL (IUPAC No. 8) (purity)                         | 7        |
| BCR290     | 2,3,3'-TRICHLOROBIPHENYL (IUPAC No. 20) (purity)                     | 7        |
| BCR291     | 2,4,4'-TRICHLOROBIPHENYL (IUPAC No. 28) (purity)                     | 7        |
| BCR293     | 2,2';5,5'-TETRACHLOROBIPHENYL (IUPAC No. 52) (purity)                | 7        |
| BCR296     | 2,2';3,4,4';5'-HEXACHLOROBIPHENYL (IUPAC No. 138) (purity)           | 7        |
| BCR297     | 2,2';4,4';5,5'-HEXACHLOROBIPHENYL (IUPAC No. 153) (purity)           | 7        |
| BCR298     | 2,2';3,4,4';5,5'-HEPTACHLOROBIPHENYL (IUPAC No. 180) (purity)        | 7        |
| BCR301RM   | MULLITE (lattice spacing, other parameters)                          | 57-58    |
| BCR302     | MICROCRYSTALLINE CELLULOSE (water content above saturated solutions) | 58       |
| BCR304     | HUMAN SERUM (Ca, Mg, Li)                                             | 52       |
| BCR305     | 1-NITROPYRENE (purity)                                               | 6        |
| BCR306     | 1-NITRONAPHTHALENE (purity)                                          | 6        |
| BCR307     | 2-NITRONAPHTHALENE (purity)                                          | 6        |
| BCR308     | 9-NITROANTHRACENE (purity)                                           | 6        |
| BCR309     | 6-NITROCHRYSENE (purity)                                             | 6        |
| BCR310     | 3-NITROFLUORANTHENE (purity)                                         | 6        |
| BCR311     | 6-NITROBENZO[a]PYRENE (purity)                                       | 6        |
| BCR312     | 2-NITRO-7-METHOXYNAPHTHO[2,1-b]FURAN (purity)                        | 6        |
| BCR318     | TITANIUM (H)                                                         | 62       |
| BCR320R    | CHANNEL SEDIMENT (trace elements)                                    | 16       |
| BCR321     | UNALLOYED ZINC (trace elements)                                      | 63       |

| Cat. No. | DESIGNATION                                                | PAGE NO. |
|----------|------------------------------------------------------------|----------|
| BCR326   | UNALLOYED ZINC (disc) (trace elements)                     | 63       |
| BCR327   | UNALLOYED ZINC (disc) (trace elements)                     | 63       |
| BCR331   | LOW VOLATILE STEAM COAL (S)                                | 64       |
| BCR332   | HIGH VOLATILE INDUSTRIAL COAL (S)                          | 64       |
| BCR333   | COKING STEAM COAL (S)                                      | 64       |
| BCR334   | ANTHRACITE (S)                                             | 64       |
| BCR335   | FLAME COAL (S)                                             | 64       |
| BCR336   | HIGH VOLATILE STEAM COAL (S)                               | 64       |
| BCR337   | DIBENZO[b,d]FURAN ( mylas)                                 | 7        |
| BCR338   | 4H-CYCLOPENTA[def]PHENANTHREN-4-ONE (purity)               | 7        |
| BCR339   | BENZO[c,d]PYREN-6-ONE (purity)                             | 7        |
| BCR340   | BENZO[b]NAPHTHO (1,2-d) FURAN (purity)                     | 7        |
| BCR341   | BENZO[b]NAPHTHO (2,1-d) FURAN (purity)                     | 7        |
| BCR342   | BENZO[a]FLUORENONE (purity)                                | 7        |
| BCR348R  | HUMAN SERUM (high progesterone)                            | 51       |
| BCR349   | COD LIVER OIL (PCBs)                                       | 37       |
| BCR351   | ZnAl4 (trace elements)                                     | 63       |
| BCR352   | ZnAl4 (trace elements)                                     | 63       |
| BCR353   | ZnAl4 (trace elements)                                     | 63       |
| BCR354   | ZnAl4 (trace elements)                                     | 63       |
| BCR355   | ZnAl4 (trace elements)                                     | 63       |
| BCR356   | ZnAl4Cu1 (trace elements)                                  | 63       |
| BCR357   | ZnAl4Cu1 (trace elements)                                  | 63       |
| BCR359   | ZnAl4Cu1 (trace elements)                                  | 63       |
| BCR360   | ZnAl4Cu1 (trace elements)                                  | 63       |
| BCR361   | ZnAl4Cu1 (trace elements)                                  | 63       |
| BCR365   | PCB STANDARD SOLUTION                                      | 7        |
| BCR375   | COMPOUND FEED (aflatoxin B1 blank)                         | 39       |
| BCR377   | MAIZE FLOUR (deoxynivalenol blank)                         | 39       |
| BCR380R  | WHOLE MILK POWDER (major nutrients)                        | 45       |
| BCR383   | HARICOTS VERTS (major nutrients)                           | 41, 44   |
| BCR386   | BOVINE URINE (diethylstilboestrol blank)                   | 47       |
| BCR387   | BOVINE URINE (dienoestrol blank)                           | 47       |
| BCR388   | BOVINE URINE (hexoestrol blank)                            | 47       |
| BCR390RM | BOVINE URINE (dienoestrol positive)                        | 47       |
| BCR391   | BOVINE URINE (hexoestrol positive)                         | 47       |
| BCR393   | HUMAN APOLIPOPROTEIN A I (mass concentration)              | 52       |
| BCR396   | WHEAT FLOUR (deoxynivalenol blank)                         | 39       |
| BCR402   | WHITE CLOVER (trace elements)                              | 18       |
| BCR405RM | HUMAN HAEMOLYSATE (glycated haemoglobin (HbA1c)            | 53       |
| BCR410   | HUMAN PROSTATIC ACID PHOSPHATASE (catalytic concentration) | 54       |
| BCR411   | BOVINE MUSCLE (diethylstilboestrol positive)               | 48       |
| BCR412   | BOVINE MUSCLE (diethylstilboestrol blank)                  | 48       |
| BCR414   | PLANKTON (trace elements)                                  | 18       |

| Cat. No. | DESIGNATION                                               | PAGE NO. |
|----------|-----------------------------------------------------------|----------|
| BCR420   | WASTE MINERAL OIL (low PCB level)                         | 26       |
| BCR423RM | AFLATOXIN M1 STANDARD SOLUTION                            | 28       |
| BCR425   | NIMONIC 75 FOR CREEP TESTING                              | 56       |
| BCR431   | BRUSSELS SPROUT (vitamins)                                | 43       |
| BCR444   | PORCINE MUSCLE (chloramphenicol blank)                    | 48       |
| BCR446   | RAPESEED (oil, moisture, volatiles)                       | 45       |
| BCR447   | RAPESEED (oil, moisture, volatiles)                       | 45       |
| BCR449   | WASTE MINERAL OIL (high PCB level)                        | 26       |
| BCR450   | NATURAL MILK POWDER (PCBs)                                | 37       |
| BCR457   | HUMAN THYROGLOBULIN (Tg) (mass concentration)             | 52       |
| BCR459   | COCONUT OIL (PAH blank)                                   | 36       |
| BCR460   | COAL (F)                                                  | 64       |
| BCR461   | CLAY (F)                                                  | 64       |
| BCR462   | COASTAL SEDIMENT (butyltins)                              | 23       |
| BCR463   | TUNA FISH (total and methylmercury)                       | 20       |
| BCR465   | RICE FLOUR ( mylase, low level)                           | 44       |
| BCR466   | RICE FLOUR ( mylase, medium level)                        | 44       |
| BCR467   | RICE FLOUR ( mylase, high level)                          | 44       |
| BCR471   | WHEAT (ochratoxin A, blank)                               | 39       |
| BCR475   | BOVINE LIVER (trenbolone blank and positive)              | 48       |
| BCR479   | FRESH WATER (nitrate, low level)                          | 20       |
| BCR480   | FRESH WATER (nitrate, high level)                         | 20       |
| BCR481   | INDUSTRIAL SOIL (PCBs)                                    | 25       |
| BCR482   | LICHEN (trace elements)                                   | 18       |
| BCR483   | SEWAGE SLUDGE AMENDED SOIL (trace elements)               | 21       |
| BCR484   | SEWAGE SLUDGE AMENDED (terra rossa) SOIL (trace elements) | 21       |
| BCR485   | MIXED VEGETABLES (vitamins)                               | 43       |
| BCR486   | PURIFIED HUMAN ALFAFOETOPROTEIN (protein mass)            | 52       |
| BCR487   | PIG LIVER (vitamins)                                      | 43       |
| BCR490   | FLY ASH (PCDDs and PCDFs)                                 | 25       |
| BCR502   | BOVINE URINE (clenbuterol and salbutamol)                 | 47       |
| BCR503   | BOVINE URINE (clenbuterol and salbutamol)                 | 48       |
| BCR504   | BOVINE URINE (clenbuterol and salbutamol)                 | 48       |
| BCR505   | ESTUARINE WATER (trace elements)                          | 20       |
| BCR519   | ANHYDROUS BUTTER FAT (triglycerides)                      | 42-43    |
| BCR522   | BOVINE BLOOD LYSATE (haemiglobincyanide)                  | 53       |
| BCR524   | INDUSTRIAL SOIL (PAHs)                                    | 24       |
| BCR529   | INDUSTRIAL SANDY SOIL (PCDDs, PCDFs)                      | 25       |
| BCR535   | FRESHWATER HARBOUR SEDIMENT (PAHs)                        | 24       |
| BCR536   | FRESHWATER HARBOUR SEDIMENT (PCBs)                        | 25       |
| BCR537   | PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film A)     | 45       |
| BCR538   | PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film B)     | 45       |
| BCR539   | PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film C)     | 45       |
| BCR543   | MUSSEL (dc-saxitoxin)                                     | 39       |

| Cat. No. | DESIGNATION                                                               | PAGE NO. |
|----------|---------------------------------------------------------------------------|----------|
| BCR545   | WELDING DUST LOADED ON FILTER (Cr VI, Cr)                                 | 23       |
| BCR546   | FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)                          | 49       |
| BCR547   | ACETALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)                          | 49       |
| BCR548   | ACROLEIN-2,4-DINITROPHENYLHYDRAZONE (purity)                              | 50       |
| BCR549   | ACETONE-2,4-DINITROPHENYLHYDRAZONE (purity)                               | 50       |
| BCR550   | GLUTARALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)                        | 50       |
| BCR551   | 2,4-DINITROPHENYLHYDRAZONES in ACETONITRILE                               | 50       |
| BCR552   | 2,4-DINITROPHENYLHYDRAZONES in ACETONITRILE (blank)                       | 50       |
| BCR553   | FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE on filter                         | 50       |
| BCR554   | FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE on filter (blank)                 | 50       |
| BCR555   | CHLORINATED HYDROCARBONS ON TENAX                                         | 50       |
| BCR563   | COMMON WHEAT FLOUR (properties)                                           | 46       |
| BCR573   | HUMAN SERUM (low creatinine)                                              | 53       |
| BCR573i  | CREATININE (interfering substances)                                       | 54       |
| BCR574   | HUMAN SERUM (medium creatinine)                                           | 53       |
| BCR575   | HUMAN SERUM (high creatinine)                                             | 53       |
| BCR576   | HUMAN SERUM (17 $\beta$ -ESTRADIOL, low level)                            | 51       |
| BCR577   | HUMAN SERUM (17 $\beta$ -ESTRADIOL, medium level)                         | 51       |
| BCR578   | HUMAN SERUM (17 $\beta$ -ESTRADIOL, high level)                           | 51       |
| BCR579   | COASTAL SEAWATER (Hg)                                                     | 20       |
| BCR596   | AQUATIC PLANT (Cr)                                                        | 17       |
| BCR597   | SEWAGE SLUDGE (Cr)                                                        | 16       |
| BCR598   | COD LIVER OIL (Organochlorine pesticides)                                 | 37       |
| BCR599   | EWES'/GOATS' CURD (for adulteration with cows' milk) 0 and 1 % cows' milk | 49       |
| BCR605   | URBAN DUST (trimethyllead)                                                | 23       |
| BCR607   | MILK POWDER (PCDDs, PCDFs)                                                | 38       |
| BCR609   | GROUND WATER (trace elements, low level)                                  | 21       |
| BCR610   | GROUND WATER (trace elements, high level)                                 | 21       |
| BCR611   | GROUND WATER (Br, high level)                                             | 20       |
| BCR612   | GROUND WATER (Br, low level)                                              | 20       |
| BCR613   | PROSTATE SPECIFIC ANTIGEN (protein mass)                                  | 53       |
| BCR614   | POLYCHLORODIBENZO-P-DIOXINS (PCDD) AND POLYCHLORODIBENZOFURANS (PCDFs)    | 8-14     |
| BCR615   | FLY ASH (LOW LEVEL) (PCDDs and PCDFs)                                     | 26       |
| BCR627   | TUNA FISH TISSUE (As species)                                             | 21       |
| BCR632   | BUTTER FAT                                                                | 43       |
| BCR633   | ANHYDROUS BUTTER FAT (tracers)                                            | 42       |
| BCR634   | HUMAN BLOOD (Pb, Cd)                                                      | 51       |
| BCR635   | HUMAN BLOOD (Pb, Cd)                                                      | 51       |
| BCR636   | HUMAN BLOOD (Pb, Cd)                                                      | 51       |
| BCR637   | HUMAN SERUM (Al, Se, Zn)                                                  | 52       |
| BCR638   | HUMAN SERUM (Al, Se, Zn)                                                  | 52       |
| BCR644   | ARTIFICIAL FOODSTUFF (major nutrients)                                    | 44       |
| BCR645   | ARTIFICIAL FOODSTUFF (major nutrients)                                    | 44       |
| BCR646   | FRESHWATER SEDIMENT (butyltin and phenyltin compounds)                    | 23       |

| Cat. No. | DESIGNATION                                         | PAGE NO. |
|----------|-----------------------------------------------------|----------|
| BCR647   | HUMAN ADENOSINE DEAMINASE (ADA 1)                   | 54       |
| BCR648   | BOVINE LIVER (CLENBUTEROL BLANK)                    | 48       |
| BCR649   | BOVINE LIVER (CLENBUTEROL POSITIVE)                 | 48       |
| BCR651   | BEER (EtOH, low level)                              | 44       |
| BCR652   | BEER (EtOH, very low level)                         | 44       |
| BCR653   | WINE (EtOH, low level)                              | 44       |
| BCR656   | ISOTOPE RATIOS IN ABSOLUTE ALCOHOL                  | 28, 67   |
| BCR657   | ISOTOPE RATIOS IN GLUCOSE                           | 28, 67   |
| BCR658   | ISOTOPE RATIOS IN SYNTHETIC WINE                    | 28, 67   |
| BCR659   | ISOTOPE RATIOS IN SYNTHETIC WINE                    | 28, 67   |
| BCR660   | ISOTOPE RATIOS IN ALCOHOLIC SOLUTION                | 28, 67   |
| BCR661B  | NIMONIC 75 FOR TENSILE PROPERTIES                   | 56-57    |
| BCR663   | SAXITOXIN IN ACETIC ACID                            | 28       |
| BCR664   | GLASS (trace elements)                              | 65       |
| BCR665   | LUNG TISSUE (asbestos fibres)                       | 55       |
| BCR666   | LUNG TISSUE (asbestos fibres)                       | 55       |
| BCR667   | ESTUARINE SEDIMENT                                  | 15-16    |
| BCR668   | MUSSEL TISSUE                                       | 19-20    |
| BCR670   | LEMNA MINOR (aquatic plant)                         | 19       |
| BCR673   | BOVINE EYE (CLENBUTEROL BLANK)                      | 48       |
| BCR674   | BOVINE EYE (CLENBUTEROL POSITIVE)                   | 48       |
| BCR677   | SEWAGE SLUDGE (PCDDs and PCDFs)                     | 25       |
| BCR679   | TRACE ELEMENTS IN WHITE CABBAGE                     | 41       |
| BCR682   | MUSSEL TISSUE                                       | 26       |
| BCR683   | BEECH WOOD                                          | 26       |
| BCR684   | RIVER SEDIMENT (extractable phosphorous)            | 22       |
| BCR685   | SKIM MILK POWDER                                    | 25       |
| BCR691   | COPPER ALLOYS                                       | 64       |
| BCR692   | SCRATCH TESTING                                     | 57       |
| BCR693   | HUMAN PANCREATIC LIPASE (from pancreatic juice)     | 54       |
| BCR694   | HUMAN PANCREATIC LIPASE (recombinant)               | 54       |
| BCR695   | PIG LIVER (CTC free)                                | 48       |
| BCR696   | PIG LIVER (CTC incurred)                            | 48       |
| BCR697   | PIG MUSCLE (CTC free)                               | 48       |
| BCR700   | ORGANIC-RICH SOIL (extractable elements)            | 21       |
| BCR701   | LAKE SEDIMENT (trace elements)                      | 23       |
| BCR704   | FAUJASITE TYPE ZEOLITE (micropore volume and width) | 58       |
| BCR705   | LINDE TYPE A ZEOLITE (micropore volume and width)   | 58       |
| BCR706   | PIG KIDNEY (CTC free)                               | 48       |
| BCR707   | PIG KIDNEY (CTC incurred)                           | 48       |
| BCR708   | DAIRY FEED (nutritional properties)                 | 45       |
| BCR709   | PIG FEED (nutritional properties)                   | 45       |
| BCR718   | HERRING (PCBs)                                      | 26       |
| BCR719   | CHUB (PCBs)                                         | 26       |

| Cat. No.    | DESIGNATION                                                                                  | PAGE NO. |
|-------------|----------------------------------------------------------------------------------------------|----------|
| BCR723      | ROAD DUST (trace elements)                                                                   | 17       |
| BCR724AE    | GLASS-CERAMIC                                                                                | 55       |
| BCR725      | SALMON TISSUE                                                                                | 49       |
| IRMMAD482   | Calibration kit for ruminant detection by PCR                                                | 49       |
| IRMMIFCC456 | ALPHA-AMYLASE (catalytic concentration)                                                      | 54       |
| IRMMIFCC467 | HAEMOGLOBIN HbA0                                                                             | 54       |
| IRMM009     | Mg, isotopic, nitrate solution                                                               | 67       |
| IRMM010     | PLATINUM, isotopic, metal                                                                    | 67       |
| IRMM011     | BORIC ACID, isotopic, solid                                                                  | 67       |
| IRMM012     | CHROMIUM, isotopic, chloride solution                                                        | 67       |
| IRMM016     | LITHIUM CARBONATE, isotopic, solid                                                           | 68       |
| IRMM017     | SILICON, isotopic, Si single crystal                                                         | 68       |
| IRMM018a    | SILICON DIOXIDE, isotopic, solid                                                             | 68       |
| IRMM311     | Genomic DNA of <i>Bacillus licheniformis</i> DSM 5749                                        | 46       |
| IRMM312     | Genomic DNA of <i>Bacillus subtilis</i> DSM 5750                                             | 46       |
| IRMM313     | Genomic DNA of <i>Campylobacter coli</i> (CNET068) and <i>Campylobacter jejuni</i> (CNET112) | 46-47    |
| IRMM315     | 4-DEOXYNIVALENOL in acetonitrile                                                             | 29       |
| IRMM316     | NIVALENOL in acetonitrile                                                                    | 29       |
| IRMM351     | ESCHERICHIA COLI 0157 (NCTC 12900)                                                           | 47       |
| IRMM3702    | ZINC-64 spike, nitrate solution                                                              | 69       |
| IRMM435     | PHARMACEUTICAL GLASS                                                                         | 55       |
| IRMM440     | RESIN-BONDED FIBRE BOARD (thermal conductivity)                                              | 55       |
| IRMM441     | n-HEPTANE (purity)                                                                           | 59, 65   |
| IRMM442     | ISOOCTANE (purity)                                                                           | 59, 65   |
| IRMM4431    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM4432    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM4433    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM4434    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM4435    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM4437    | EUROSOIL (adsorption coefficients and pH)                                                    | 27       |
| IRMM447     | Genomic DNA of <i>Listeria monocytogenes</i>                                                 | 47       |
| IRMM448     | Genomic DNA of <i>Campylobacter jejuni</i>                                                   | 47       |
| IRMM449     | Genomic DNA of <i>Escherichia coli</i>                                                       | 47       |
| IRMM468     | THYROXINE (T4)                                                                               | 50       |
| IRMM469     | 3,3',5 TRIIODOTHYRONINE (T3)                                                                 | 50       |
| IRMM471     | CEMENTITE GRAINS IN CARBURISED PURE IRON                                                     | 66       |
| IRMM521     | Ni                                                                                           | 61       |
| IRMM522     | Cu                                                                                           | 61       |
| IRMM523     | Al                                                                                           | 61       |
| IRMM524     | Fe                                                                                           | 61       |
| IRMM525     | Nb                                                                                           | 61       |
| IRMM526     | Nb                                                                                           | 61       |
| IRMM527R    | Al-0.1 % Co                                                                                  | 61       |
| IRMM528R    | Al-1.0 % Co                                                                                  | 61       |

| Cat. No. | DESIGNATION                                 | PAGE NO. |
|----------|---------------------------------------------|----------|
| IRMM529  | Rh                                          | 61       |
| IRMM530R | Al-0.1 % Au                                 | 62       |
| IRMM531  | Ti                                          | 61       |
| IRMM532  | Al-0.01 % Co                                | 62       |
| IRMM533  | Al-0.1 % Ag                                 | 62       |
| IRMM534  | Al-2.0 % Sc                                 | 62       |
| IRMM540R | OXIDE GLASS (15 ppm U)                      | 66       |
| IRMM541  | OXIDE GLASS (50 ppm U)                      | 66       |
| IRMM610  | BORON-10 spike, aqueous solution            | 68       |
| IRMM611  | BORON (natural) spike, aqueous solution     | 68       |
| IRMM615  | LITHIUM-6 spike, chloride solution          | 68       |
| IRMM618  | RUBIDIUM-87 spike, nitrate solution         | 68       |
| IRMM619  | RUBIDIUM (natural) spike, nitrate solution  | 68       |
| IRMM620  | IRON-57 spike, chloride solution            | 68       |
| IRMM621  | CADMIUM-111 spike, nitrate solution         | 68       |
| IRMM622  | CADMIUM-111 spike, nitrate solution         | 68       |
| IRMM624  | CHROMIUM-50 spike, chloride solution        | 68       |
| IRMM625  | CHROMIUM (natural) spike, chloride solution | 68       |
| IRMM632  | COPPER-65 spike, nitrate solution           | 68       |
| IRMM634  | IRON (natural) spike, chloride solution     | 68       |
| IRMM643  | SULPHUR-32 spike, nitrate solution          | 69       |
| IRMM644  | SULPHUR-32 spike, nitrate solution          | 69       |
| IRMM645  | SULPHUR-32 spike, nitrate solution          | 69       |
| IRMM646  | SULPHUR-34 spike, nitrate solution          | 69       |
| IRMM651  | ZINC-64 spike, nitrate solution             | 69       |
| IRMM652  | ZINC-64 spike, nitrate solution             | 69       |
| IRMM653  | ZINC-67 spike, nitrate solution             | 69       |
| IRMM654  | ZINC-68 spike, nitrate solution             | 69       |
| IRMM801  | COCOA BUTTER                                | 42       |
| IRMM804  | RICE FLOUR                                  | 40       |
| STA003m  | TETRAMETHYLUREA                             | 28       |
| VDA 0014 | POLYETHYLENE (40, 75, 200, 400 mg/kg Cd)    | 66       |

## ALPHABETICAL LIST

| DESIGNATION                                                 | ERM / CRM    | PAGE NO. |
|-------------------------------------------------------------|--------------|----------|
| γ-GLUTAMYLTRANSFERASE (catalytic concentration)             | ERMAD452IFCC | 54       |
| 10-AZABENZO[a]PYRENE (purity)                               | BCR092       | 5        |
| 1-METHYLBENZ[a]ANTHRACENE (purity)                          | BCR093R      | 5        |
| 1-METHYLCHRYSENE (purity)                                   | BCR077R      | 5        |
| 1-NITRONAPHTALENE (purity)                                  | BCR306       | 6        |
| 1-NITROPYRENE (purity)                                      | BCR305       | 6        |
| 2,2',3,4,4',5'-HEPTACHLOROBIPHENYL (IUPAC No. 180) (purity) | BCR298       | 7        |
| 2,2',3,4,4',5'-HEXACHLOROBIPHENYL (IUPAC No. 138) (purity)  | BCR296       | 7        |
| 2,2',4,4',5,5'-HEXACHLOROBIPHENYL (IUPAC No. 153) (purity)  | BCR297       | 7        |
| 2,2',5,5'-TETRACHLOROBIPHENYL (IUPAC No. 52) (purity)       | BCR293       | 7        |
| 2,3,3'-TRICHLOROBIPHENYL (IUPAC No. 20) (purity)            | BCR290       | 7        |
| 2,4,4'-TRICHLOROBIPHENYL (IUPAC No. 28) (purity)            | BCR291       | 7        |
| 2,4'-DICHLOROBIPHENYL (IUPAC No. 8) (purity)                | BCR289       | 7        |
| 2,4-DINITROPHENYLHYDRAZONES in ACETONITRILE                 | BCR551       | 50       |
| 2,4-DINITROPHENYLHYDRAZONES in ACETONITRILE (blank)         | BCR552       | 50       |
| 2-METHYLCHRYSENE (purity)                                   | BCR078R      | 5        |
| 2-NITRO-7-METHOXYNAPHTHO[2,1-b]FURAN (purity)               | BCR312       | 6        |
| 2-NITRONAPHTALENE (purity)                                  | BCR307       | 6        |
| 3 REFERENCE ETHANOLS (H, M, L) (for SNIF-NMR)               | BCR123A, B   | 27, 66   |
| 3,3',5 TRIIODOTHYRONINE (T3)                                | IRMM469      | 50       |
| 3-METHYLCHRYSENE (purity)                                   | BCR079R      | 5        |
| 3-NITROFLUORANTHENE (purity)                                | BCR310       | 6        |
| 4-DEOXYNIVALENOL in acetonitrile                            | IRMM315      | 29       |
| 4H-CYCLOPENTA[def]PHENANTHREN-4-ONE (purity)                | BCR338       | 7        |
| 4-METHYLCHRYSENE (purity)                                   | BCR080R      | 5        |
| 5-METHYLCHRYSENE (purity)                                   | BCR081R      | 5        |
| 6-NITROBENZO[a]PYRENE (purity)                              | BCR311       | 6        |
| 6-NITROCHRYSENE (purity)                                    | BCR309       | 6        |
| 7H-DIBENZO (c,g) CARBAZOLE (purity)                         | BCR266       | 6        |
| 9-NITROANTHRACENE (purity)                                  | BCR308       | 6        |
| ACETALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)            | BCR547       | 49       |
| ACETONE-2,4-DINITROPHENYLHYDRAZONE (purity)                 | BCR549       | 50       |
| ACROLEIN-2,4-DINITROPHENYLHYDRAZONE (purity)                | BCR548       | 50       |
| AFLATOXIN B1 IN ACETONITRILE                                | ERMAC057     | 28       |
| AFLATOXIN B2 IN ACETONITRILE                                | ERMAC058     | 29       |
| AFLATOXIN G1 IN ACETONITRILE                                | ERMAC059     | 29       |
| AFLATOXIN G2 IN ACETONITRILE                                | ERMAC060     | 29       |
| AFLATOXIN M1 STANDARD SOLUTION                              | BCR423RM     | 28       |
| Al                                                          | IRMM523      | 61       |
| Al-0.01 % Co                                                | IRMM532      | 62       |
| Al-0.1 % Ag                                                 | IRMM533      | 62       |
| Al-0.1 % Au                                                 | IRMM530R     | 62       |
| Al-2.0 % Sc                                                 | IRMM534      | 62       |

| DESIGNATION                                                                 | ERM / CRM    | PAGE NO. |
|-----------------------------------------------------------------------------|--------------|----------|
| ALANINE AMINOTRANSFERASE (catalytic concentration)                          | ERMAD454IFCC | 54       |
| ALPHA ALUMINA (0.10 m <sup>2</sup> /g) (nitrogen BET specific surface area) | BCR169       | 57       |
| ALPHA ALUMINA (1.05 m <sup>2</sup> /g) (nitrogen BET specific surface area) | BCR170       | 57       |
| ALPHA-AMYLASE (catalytic concentration)                                     | IRMMIFCC456  | 54       |
| ALUMINA (2.95 m <sup>2</sup> /g) (nitrogen BET specific surface area)       | BCR171       | 57       |
| ANHYDROUS BUTTER FAT (tracers)                                              | BCR633       | 42       |
| ANHYDROUS BUTTER FAT (triglycerides)                                        | BCR519       | 42-43    |
| ANIMAL FEED (Organochlorine pesticides)                                     | BCR115       | 38       |
| ANTHANTHRENE (purity)                                                       | BCR091       | 5        |
| ANTHRACITE (S)                                                              | BCR334       | 64       |
| APPLE (dietary fibre)                                                       | ERMBC516     | 45       |
| AQUATIC PLANT (Cr)                                                          | BCR596       | 17       |
| ARTIFICIAL FOODSTUFF (major nutrients)                                      | BCR644       | 44       |
| ARTIFICIAL FOODSTUFF (major nutrients)                                      | BCR645       | 44       |
| ASPARTATE TRANSAMINASE (AST)                                                | ERMAD457IFCC | 54       |
| BCR-ABL pdNA CALIBRANT                                                      | ERMAD623     | 54       |
| BEECH WOOD                                                                  | BCR683       | 26       |
| BEEF-PORK FAT BLEND (fatty acid profile)                                    | BCR163       | 42       |
| BEER (EtOH, low level)                                                      | BCR651       | 44       |
| BEER (EtOH, very low level)                                                 | BCR652       | 44       |
| BENZ[a]ACRIDINE (purity)                                                    | BCR157       | 5        |
| BENZ[a]ANTHRACENE (purity)                                                  | BCR271       | 6        |
| BENZ[c]ACRIDINE (purity)                                                    | BCR158       | 5        |
| BENZO[a]FLUORANTHENE (purity)                                               | BCR097       | 5        |
| BENZO[a]FLUORENONE (purity)                                                 | BCR342       | 7        |
| BENZO[b]CHRYSENE (purity)                                                   | BCR046       | 5        |
| BENZO[b]FLUORANTHENE (purity)                                               | BCR047       | 5        |
| BENZO[b]NAPHTHO (1,2-d) FURAN (purity)                                      | BCR340       | 7        |
| BENZO[b]NAPHTHO (2,1-d) FURAN (purity)                                      | BCR341       | 7        |
| BENZO[b]NAPHTHO[1,2-d]THIOPHENE (purity)                                    | BCR137R      | 5        |
| BENZO[b]NAPHTHO[2,3-d]THIOPHENE (purity)                                    | BCR136R      | 5        |
| BENZO[c,d]PYREN-6-ONE (purity)                                              | BCR339       | 7        |
| BENZO[c]CHRYSENE (purity)                                                   | BCR140       | 5        |
| BENZO[c]PHENANTHRENE (purity)                                               | BCR134       | 5        |
| BENZO[e]PYRENE (purity)                                                     | BCR050       | 5        |
| BENZO[ghi]FLUORANTHENE (purity)                                             | BCR139       | 5        |
| BENZO[ghi]PERYLENE (purity)                                                 | BCR052       | 5        |
| BENZO[j]FLUORANTHENE (purity)                                               | BCR049       | 5        |
| BENZO[k]FLUORANTHENE (purity)                                               | BCR048R      | 5        |
| BIODIESEL                                                                   | ERMEF001     | 59-60    |
| BLADDERWRACK ( <i>Fucus vesiculosus</i> ) (trace elements)                  | ERMCD200     | 19       |
| BORIC ACID, isotopic, solid                                                 | IRMM011      | 67       |
| BORON (natural) spike, aqueous solution                                     | IRMM611      | 68       |
| BORON-10 spike, aqueous solution                                            | IRMM610      | 68       |

| DESIGNATION                                                            | ERM / CRM | PAGE NO. |
|------------------------------------------------------------------------|-----------|----------|
| BOVINE BLOOD (Pb, Cd)                                                  | ERMCE196  | 51       |
| BOVINE BLOOD LYSATE (haemoglobincyanide)                               | BCR522    | 53       |
| BOVINE EYE (CLENBUTEROL BLANK)                                         | BCR673    | 48       |
| BOVINE EYE (CLENBUTEROL POSITIVE)                                      | BCR674    | 48       |
| BOVINE LIVER (CLENBUTEROL BLANK)                                       | BCR648    | 48       |
| BOVINE LIVER (CLENBUTEROL POSITIVE)                                    | BCR649    | 48       |
| BOVINE LIVER (trace elements)                                          | BCR185R   | 40       |
| BOVINE LIVER (trenbolone blank and positive)                           | BCR4745   | 48       |
| BOVINE MUSCLE (diethylstilboestrol blank)                              | BCR412    | 48       |
| BOVINE MUSCLE (diethylstilboestrol positive)                           | BCR411    | 48       |
| BOVINE MUSCLE (trace elements)                                         | ERMBB184  | 47       |
| BOVINE URINE (diethylstilboestrol, dienoestrol and hexoestrol)         | ERMBB389  | 48       |
| BOVINE URINE (diethylstilboestrol, dienoestrol and hexoestrol) (blank) | ERMBB386  | 48       |
| BOVINE URINE (clenbuterol and salbutamol)                              | BCR502    | 47       |
| BOVINE URINE (clenbuterol and salbutamol)                              | BCR503    | 47       |
| BOVINE URINE (clenbuterol and salbutamol)                              | BCR504    | 47       |
| BOVINE URINE (dienoestrol blank)                                       | BCR387    | 47       |
| BOVINE URINE (dienoestrol positive)                                    | BCR390RM  | 47       |
| BOVINE URINE (diethylstilboestrol blank)                               | BCR386    | 47       |
| BOVINE URINE (hexoestrol blank)                                        | BCR388    | 47       |
| BOVINE URINE (hexoestrol positive)                                     | BCR391    | 47       |
| BRAN BREAKFAST CEREAL (dietary fibre)                                  | ERMBD518  | 45       |
| BROWN BREAD (trace elements)                                           | BCR191    | 40       |
| BROWN COAL                                                             | ERMEF412  | 55       |
| BRUSSELS SPROUT (vitamins)                                             | BCR431    | 43       |
| BUTTER FAT                                                             | BCR632    | 43       |
| CADMIUM-111 spike, nitrate solution                                    | IRMM621   | 68       |
| CADMIUM-111 spike, nitrate solution                                    | IRMM622   | 68       |
| CALCAREOUS SOIL                                                        | ERMCC690  | 15-16    |
| CALCIUM AMMONIUM NITRATE FERTILIZER (composition)                      | BCR178    | 61       |
| CALCIUM-41 isotopic, nitrate solution (set of 8 units)                 | ERMAE701  | 67       |
| Calibration kit for ruminant detection by PCR                          | IRMMAD482 | 49       |
| CARROT (dietary fibre)                                                 | ERMBC515  | 45       |
| CEMENTITE GRAINS IN CARBURISED PURE IRON                               | IRMM471   | 66       |
| CHANNEL SEDIMENT (trace elements)                                      | BCR320R   | 16       |
| CHLORIDE (natural) spike, chloride solution                            | ERMAE641  | 69       |
| CHLORIDE-37 spike, chloride solution                                   | ERMAE642  | 69       |
| CHLORINATED HYDROCARBONS ON TENAX                                      | BCR555    | 50       |
| CHROMIUM (natural) spike, chloride solution                            | IRMM625   | 68       |
| CHROMIUM, isotopic, chloride solution                                  | IRMM012   | 67       |
| CHROMIUM-50 spike, chloride solution                                   | IRMM624   | 68       |
| CHRYSENE (purity)                                                      | BCR269    | 6        |
| CHUB (PCBs)                                                            | BCR719    | 26       |
| CLAY (F)                                                               | BCR461    | 64       |

| DESIGNATION                                                  | ERM / CRM  | PAGE NO. |
|--------------------------------------------------------------|------------|----------|
| COAL (F)                                                     | BCR460     | 64       |
| COASTAL SEAWATER (Hg)                                        | BCR579     | 20       |
| COASTAL SEDIMENT (butyltins)                                 | BCR462     | 23       |
| COCOA BUTTER                                                 | IRMM801    | 42       |
| COCONUT OIL (PAH blank)                                      | BCR459     | 36       |
| COD LIVER OIL (Organochlorine pesticides)                    | BCR598     | 37       |
| COD LIVER OIL (PCBs)                                         | BCR349     | 37       |
| COKING STEAM COAL (S)                                        | BCR333     | 64       |
| COLLOIDAL SILICA                                             | ERMFD100   | 58-59    |
| COLLOIDAL SILICA                                             | ERMFD304   | 59       |
| COLLOIDAL SILICA IN AQUEOUS SOLUTION                         | ERMFD102   | 59       |
| COMMON WHEAT FLOUR (properties)                              | BCR563     | 46       |
| COMPOUND FEED (aflatoxin B1 blank)                           | BCR375     | 39       |
| COMPOUND FEEDINGSTUFF (high level)                           | ERM BE376  | 39       |
| COMPOUND FEEDINGSTUFF (very low level)                       | ERM BE375  | 39       |
| CONTINUOUS CAST COPPER (O)                                   | BCR058     | 62       |
| COPPER (natural) spike, nitrate solution                     | ERMAE633   | 68       |
| COPPER (O)                                                   | BCR054R    | 62       |
| COPPER (S, P)                                                | BCR017A, B | 62       |
| COPPER ALLOYS                                                | BCR691     | 64       |
| COPPER-63, nitrate solution                                  | ERMAE647   | 69       |
| COPPER-65 spike, nitrate solution                            | IRMM632    | 68       |
| CORONENE (purity)                                            | BCR272     | 6        |
| CORTISOL REFERENCE SERUM PANEL                               | ERM DA451  | 50-51    |
| CREATINE KINASE (CK-MB iso-enzyme) (catalytic concentration) | ERM AD455  | 54       |
| CREATININE (interfering substances)                          | BCR573i    | 54       |
| Cu                                                           | IRMM522    | 61       |
| DAIRY FEED (nutritional properties)                          | BCR708     | 45       |
| DEFATTED PEANUT MEAL (aflatoxin B1, blank)                   | BCR262R    | 39       |
| DEFATTED PEANUT MEAL (aflatoxin B1, high level)              | BCR264     | 39       |
| DEFATTED PEANUT MEAL (aflatoxin B1, medium level)            | BCR263R    | 39       |
| DIBENZ[a,c]ACRIDINE ( mylas)                                 | BCR155     | 5        |
| DIBENZ[a,h]ACRIDINE (purity)                                 | BCR153R    | 5        |
| DIBENZ[a,l]ACRIDINE ( mylas)                                 | BCR152     | 6        |
| DIBENZ[a,j]ACRIDINE (purity)                                 | BCR154     | 5        |
| DIBENZ[a,c]ANTHRACENE (purity)                               | BCR094     | 5        |
| DIBENZ[a,j]ANTHRACENE (purity)                               | BCR095     | 5        |
| DIBENZ[c,h]ACRIDINE (purity)                                 | BCR156R    | 5        |
| DIBENZO[a,e]FLUORANTHENE ( mylas)                            | BCR265     | 6        |
| DIBENZO[a,h]PYRENE ( mylas)                                  | BCR159     | 5        |
| DIBENZO[a,e]PYRENE ( mylas)                                  | BCR133     | 5        |
| DIBENZO[a,h]ANTHRACENE (purity)                              | BCR138     | 5        |
| DIBENZO[a,l]PYRENE ( mylas)                                  | BCR096     | 5        |
| DIBENZO[b,d]FURAN ( mylas)                                   | BCR337     | 7        |

| DESIGNATION                                                               | ERM / CRM  | PAGE NO. |
|---------------------------------------------------------------------------|------------|----------|
| ELECTROLYTIC TOUGH PITCH COPPER (O)                                       | BCR022A, B | 62       |
| ELECTROLYTICALLY REFINED LEAD (trace elements)                            | BCR286A, B | 62       |
| ESCHERICHIA COLI 0157 (NCTC 12900)                                        | IRMM351    | 47       |
| ESTUARINE SEDIMENT                                                        | BCR667     | 15-16    |
| ESTUARINE SEDIMENT (Hg, methylmercury)                                    | ERMCC580   | 16, 23   |
| ESTUARINE WATER (trace elements)                                          | BCR505     | 20       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4431   | 27       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4432   | 27       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4433   | 27       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4434   | 27       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4435   | 27       |
| EUROSOIL (adsorption coefficients and Ph)                                 | IRMM4437   | 27       |
| EWES'/GOATS' CURD (for adulteration with cows' milk) 0 and 1 % cows' milk | BCR599     | 49       |
| FAUJASITE TYPE ZEOLITE (micropore volume and width)                       | BCR704     | 58       |
| Fe                                                                        | IRMM524    | 61       |
| FINE DUST (PM <sub>10</sub> -like) (elements)                             | ERMCZ120   | 17       |
| FINE DUST (PM <sub>10</sub> -like) (PAHs)                                 | ERMCZ100   | 24       |
| FISH MUSCLE (trace elements)                                              | ERMBB422   | 40       |
| FISH OIL                                                                  | ERMBB350   | 37       |
| FLAME COAL (S)                                                            | BCR335     | 64       |
| FLUORANTHENE (purity)                                                     | BCR160R    | 6        |
| FLY ASH (LOW LEVEL) (PCDDs and PCDFs)                                     | BCR615     | 26       |
| FLY ASH (PCDDs and PCDFs)                                                 | BCR490     | 25       |
| FLY ASH (trace elements)                                                  | BCR176R    | 17       |
| FLY ASH FROM PULVERISED COAL (trace elements)                             | BCR038     | 17       |
| FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)                          | BCR546     | 49       |
| FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE on filter                         | BCR553     | 50       |
| FORMALDEHYDE-2,4-DINITROPHENYLHYDRAZONE on filter (blank)                 | BCR554     | 50       |
| FRESH WATER (nitrate, high level)                                         | BCR480     | 20       |
| FRESH WATER (nitrate, low level)                                          | BCR479     | 20       |
| FRESHWATER HARBOUR SEDIMENT (PAHs)                                        | BCR535     | 24       |
| FRESHWATER HARBOUR SEDIMENT (PCBs)                                        | BCR536     | 25       |
| FRESHWATER SEDIMENT (butyltin and phenyltin compounds)                    | BCR646     | 23       |
| FULL FAT SOYA (dietary fibre)                                             | ERMBC517   | 45       |
| FURNACE COKE                                                              | ERMEF413   | 55       |
| GAS OIL (0.0203 % S)                                                      | ERMEF672   | 64       |
| GAS OIL (0.0452 % S)                                                      | ERMEF671   | 64       |
| GAS OIL (0.1019 % S)                                                      | ERMEF104   | 64       |
| GAS OIL (0.363 % S)                                                       | BCR105     | 64       |
| GAS OIL (0.502 % S)                                                       | BCR106     | 64       |
| GAS OIL (1.040 % S)                                                       | BCR107     | 64       |
| GAS OIL (Solvent Yellow 124)                                              | ERMEF317   | 65       |
| GAS OIL (Solvent Yellow 124)                                              | ERMEF318   | 55       |
| GENETICALLY MODIFIED AM04-1020 POTATO                                     | ERMBF430   | 35       |

| DESIGNATION                                                                                  | ERM / CRM   | PAGE NO. |
|----------------------------------------------------------------------------------------------|-------------|----------|
| GENETICALLY MODIFIED AV43-6-G7 POTATO                                                        | ERMBF431    | 35       |
| GENETICALLY MODIFIED DAS-40278-9 MAIZE                                                       | ERMBF433    | 35       |
| GENETICALLY MODIFIED DAS-44406-6 SOYA                                                        | ERMBF436    | 36       |
| GENETICALLY MODIFIED DAS-81419-2 SOYA                                                        | ERMBF437    | 36       |
| GENETICALLY MODIFIED 1507 MAIZE                                                              | ERMBF418    | 32       |
| GENETICALLY MODIFIED 281-24-236 X 3006-210-23 COTTON SEED                                    | ERMBF422    | 33       |
| GENETICALLY MODIFIED 3272 MAIZE                                                              | ERMBF420    | 32       |
| GENETICALLY MODIFIED 59122 MAIZE                                                             | ERMBF424    | 33       |
| GENETICALLY MODIFIED 73496 RAPESEED                                                          | ERMBF434    | 35-36    |
| GENETICALLY MODIFIED 98140 MAIZE                                                             | ERMBF427    | 34       |
| GENETICALLY MODIFIED Bt-11 MAIZE                                                             | ERMBF412    | 30       |
| GENETICALLY MODIFIED Bt-176 MAIZE                                                            | ERMBF411    | 30       |
| GENETICALLY MODIFIED EH92-527-1 POTATO                                                       | ERMBF421    | 32       |
| GENETICALLY MODIFIED GA21 MAIZE                                                              | ERMBF414    | 31       |
| GENETICALLY MODIFIED GHB119 COTTON                                                           | ERMBF428    | 34       |
| GENETICALLY MODIFIED H7-1 SUGAR BEET                                                         | ERMBF419    | 32       |
| GENETICALLY MODIFIED MIR604 MAIZE                                                            | ERMBF423    | 33       |
| GENETICALLY MODIFIED MON 810 MAIZE                                                           | ERMBF413k   | 30       |
| GENETICALLY MODIFIED MON 863 MAIZE                                                           | ERMBF416    | 31-32    |
| GENETICALLY MODIFIED MON 863 x MON 810 MAIZE                                                 | ERMBF417    | 32       |
| GENETICALLY MODIFIED NK603 MAIZE                                                             | ERMBF415    | 31       |
| GENETICALLY MODIFIED PH05-026-0048 POTATO                                                    | ERMBF435    | 36       |
| GENETICALLY MODIFIED ROUNDUP READY SOYA                                                      | ERMBF410k   | 29       |
| GENETICALLY MODIFIED SOYA 305423                                                             | ERMBF426    | 34       |
| GENETICALLY MODIFIED SOYA 356043                                                             | ERMBF425    | 33       |
| GENETICALLY MODIFIED SOYA DAS-68416-4                                                        | ERMBF432    | 35       |
| GENETICALLY MODIFIED T304-40 COTTON                                                          | ERMBF429    | 34       |
| Genomic DNA of <i>Bacillus licheniformis</i> DSM 5749                                        | IRMM311     | 46       |
| Genomic DNA of <i>Bacillus subtilis</i> DSM 5750                                             | IRMM312     | 46       |
| Genomic DNA of <i>Campylobacter coli</i> (CNET068) and <i>Campylobacter jejuni</i> (CNET112) | IRMM313     | 46-47    |
| Genomic DNA of <i>Campylobacter jejuni</i>                                                   | IRMM448     | 47       |
| Genomic DNA of <i>Escherichia coli</i>                                                       | IRMM449     | 49       |
| Genomic DNA of <i>Listeria monocytogenes</i>                                                 | IRMM447     | 47       |
| GLASS (trace elements)                                                                       | BCR664      | 65       |
| GLASS-CERAMIC                                                                                | BCR724A-E   | 55       |
| GLUTARALDEHYDE-2,4-DINITROPHENYLHYDRAZONE (purity)                                           | BCR550      | 50       |
| GROUND WATER                                                                                 | ERMCA615    | 21       |
| GROUND WATER                                                                                 | ERMCA616    | 21       |
| GROUND WATER (Br, high level)                                                                | BCR611      | 20       |
| GROUND WATER (Br, low level)                                                                 | BCR612      | 20       |
| GROUND WATER (trace elements, high level)                                                    | BCR610      | 21       |
| GROUND WATER (trace elements, low level)                                                     | BCR609      | 21       |
| HAEMOGLOBIN HbA0                                                                             | IRMMIFCC467 | 54       |
| HARD COAL                                                                                    | ERMEF411    | 55       |

| DESIGNATION                                                   | ERM / CRM      | PAGE NO. |
|---------------------------------------------------------------|----------------|----------|
| HARICOTS BEANS (dietary fibre)                                | ERMBC514       | 45       |
| HARICOTS VERTS (major nutrients)                              | BCR383         | 41, 44   |
| HAY POWDER (elements)                                         | BCR129         | 18       |
| HERRING (PCBs)                                                | BCR718         | 26       |
| HIGH VOLATILE INDUSTRIAL COAL (S)                             | BCR332         | 64       |
| HIGH VOLATILE STEAM COAL (S)                                  | BCR336         | 64       |
| HUMAN ADENOSINE DEAMINASE (ADA 1)                             | BCR647         | 54       |
| HUMAN APOLIPOPROTEIN A I (mass concentration)                 | BCR393         | 52       |
| HUMAN BLOOD (Pb, Cd)                                          | BCR634         | 51       |
| HUMAN BLOOD (Pb, Cd)                                          | BCR635         | 51       |
| HUMAN BLOOD (Pb, Cd)                                          | BCR636         | 51       |
| HUMAN HAEMOLYSATE (glycated haemoglobin (HbA <sub>1c</sub> )) | BCR405RM       | 53       |
| HUMAN HAIR (trace elements)                                   | ERMDB001       | 52       |
| HUMAN PANCREATIC LIPASE (from pancreatic juice)               | BCR693         | 54       |
| HUMAN PANCREATIC LIPASE (recombinant)                         | BCR694         | 54       |
| HUMAN PROSTATIC ACID PHOSPHATASE (catalytic concentration)    | BCR410         | 54       |
| HUMAN SERUM (17 $\beta$ -ESTRADIOL, high level)               | BCR578         | 51       |
| HUMAN SERUM (17 $\beta$ -ESTRADIOL, low level)                | BCR576         | 51       |
| HUMAN SERUM (17 $\beta$ -ESTRADIOL, medium level)             | BCR577         | 51       |
| HUMAN SERUM (Al, Se, Zn)                                      | BCR637         | 52       |
| HUMAN SERUM (Al, Se, Zn)                                      | BCR638         | 52       |
| HUMAN SERUM (Ca, Mg, Li)                                      | BCR304         | 52       |
| HUMAN SERUM (cortisol spiked)                                 | ERMADA193      | 51       |
| HUMAN SERUM (cortisol unspiked)                               | ERMADA192      | 51       |
| HUMAN SERUM (CRP)                                             | ERMADA474IFCC  | 53       |
| HUMAN SERUM (cystatin C)                                      | ERMADA471IFCC  | 53       |
| HUMAN SERUM (high creatinine)                                 | BCR575         | 53       |
| HUMAN SERUM (high progesterone)                               | BCR348R        | 51       |
| HUMAN SERUM (low creatinine)                                  | BCR573         | 53       |
| HUMAN SERUM (medium creatinine)                               | BCR574         | 53       |
| HUMAN SERUM (progesterone)                                    | ERMADA347      | 51       |
| HUMAN SERUM (proteins)                                        | ERMADA470kIFCC | 53       |
| HUMAN THYROGLOBULIN (Tg) (mass concentration)                 | BCR457         | 52       |
| INDENO[1,2,3-cd]FLUORANTHENE (purity)                         | BCR267         | 6        |
| INDUSTRIAL SANDY SOIL (PCDDs, PCDFs)                          | BCR529         | 25       |
| INDUSTRIAL SOIL (PAHs)                                        | BCR524         | 24       |
| INDUSTRIAL SOIL (PCBs)                                        | BCR481         | 25       |
| IRON (natural) spike, chloride solution                       | IRMM634        | 68       |
| IRON-57 spike, chloride solution                              | IRMM620        | 68       |
| ISOOCTANE (purity)                                            | IRMM442        | 59, 65   |
| ISOTOPE RATIOS IN ABSOLUTE ALCOHOL                            | BCR656         | 28, 67   |
| ISOTOPE RATIOS IN ALCOHOLIC SOLUTION                          | BCR660         | 28, 67   |
| ISOTOPE RATIOS IN GLUCOSE                                     | BCR657         | 28, 67   |
| ISOTOPE RATIOS IN SYNTHETIC WINE                              | BCR658         | 28, 67   |

| DESIGNATION                                                          | ERM / CRM | PAGE NO. |
|----------------------------------------------------------------------|-----------|----------|
| ISOTOPE RATIOS IN SYNTHETIC WINE                                     | BCR659    | 28, 67   |
| LAKE SEDIMENT (trace elements)                                       | BCR701    | 23       |
| LATEX SPHERES (particle diameter 2 microns)                          | BCR165    | 50       |
| LATEX SPHERES (particle diameter 4.8 microns)                        | BCR166    | 50       |
| LATEX SPHERES (particle diameter 9.6 microns)                        | BCR167    | 50       |
| LEAD GLASS (composition/refractive index)                            | BCR126A   | 61       |
| LEAD WITH ADDED IMPURITIES (trace elements)                          | BCR288B   | 62       |
| LEMNA MINOR (aquatic plant)                                          | BCR670    | 19       |
| LICHEN (trace elements)                                              | BCR482    | 18       |
| LIGHT SANDY SOIL (trace elements)                                    | BCR142R   | 15       |
| LIMESTONE POWDERS (for shear testing)                                | BCR116    | 56       |
| LINDE TYPE A ZEOLITE (micropore volume and width)                    | BCR705    | 58       |
| LITHIUM CARBONATE, isotopic, solid                                   | IRMM016   | 68       |
| LITHIUM-6 spike, chloride solution                                   | IRMM615   | 68       |
| LOAM SOIL                                                            | ERMCC141  | 15       |
| LOW VOLATILE STEAM COAL (S)                                          | BCR331    | 64       |
| LUNG TISSUE (asbestos fibres)                                        | BCR665    | 55       |
| LUNG TISSUE (asbestos fibres)                                        | BCR666    | 55       |
| MAGNESIUM (natural) spike, nitrate solution                          | ERMAE637  | 68       |
| MAGNESIUM-26 spike, nitrate solution                                 | ERMAE638  | 68       |
| MAIZE                                                                | ERMBC716  | 39       |
| MAIZE                                                                | ERMBC717  | 39       |
| MAIZE FLOUR (deoxynivalenol blank)                                   | BCR377    | 39       |
| MARGARINE (vitamins)                                                 | BCR122    | 43       |
| MERCURY (natural) spike, chloride solution                           | ERMAE639  | 68       |
| MERCURY-202 spike, chloride solution                                 | ERMAE640  | 69       |
| Mg, isotopic, nitrate solution                                       | IRMM009   | 67       |
| MICROCRYSTALLINE CELLULOSE (water content above saturated solutions) | BCR302    | 58       |
| MILK POWDER (PCDDs, PCDFs)                                           | BCR607    | 38       |
| MIXED VEGETABLES (vitamins)                                          | BCR485    | 43       |
| MOROCCAN PHOSPHATE ROCK (trace elements)                             | BCR032    | 60       |
| MULLITE (lattice spacing, other parameters)                          | BCR301RM  | 57-58    |
| MUSSEL (dc-saxitoxin)                                                | BCR543    | 39       |
| MUSSEL TISSUE                                                        | BCR668    | 19-20    |
| MUSSEL TISSUE                                                        | BCR682    | 26       |
| MUSSEL TISSUE (butyltins)                                            | ERMCE477  | 24       |
| MUSSEL TISSUE (elements)                                             | ERMCE278k | 19       |
| NATURAL MILK POWDER (PCBs)                                           | BCR450    | 37       |
| NATURAL MILK POWDER (pesticides)                                     | BCR187    | 38       |
| NATURAL PORK FAT (blank)                                             | ERMBC444  | 37       |
| Nb                                                                   | IRMM525   | 61       |
| Nb                                                                   | IRMM526   | 61       |
| n-HEPTANE (purity)                                                   | IRMM441   | 59, 65   |
| Ni                                                                   | IRMM521   | 61       |

| DESIGNATION                                                            | ERM / CRM   | PAGE NO. |
|------------------------------------------------------------------------|-------------|----------|
| NIMONIC 75 FOR CREEP TESTING                                           | BCR425      | 56       |
| NIMONIC 75 FOR TENSILE PROPERTIES                                      | BCR661B     | 56-57    |
| NIVALENOL in acetonitrile                                              | IRMM316     | 29       |
| ORGANIC-RICH SOIL (extractable elements)                               | BCR700      | 21       |
| OXIDE GLASS (15 ppm U)                                                 | IRMM540R    | 66       |
| OXIDE GLASS (50 ppm U)                                                 | IRMM541     | 66       |
| PAHs IN ACETONITRILE / TOLUENE                                         | ERMAC213    | 14       |
| PCB STANDARD SOLUTION                                                  | BCR365      | 7        |
| PETROL                                                                 | ERMEF211    | 64       |
| PHARMACEUTICAL GLASS                                                   | IRMM435     | 55       |
| PICENE (purity)                                                        | BCR168      | 6        |
| PIG FEED (nutritional properties)                                      | BCR709      | 45       |
| PIG KIDNEY (CTC free)                                                  | BCR706      | 48       |
| PIG KIDNEY (CTC incurred)                                              | BCR707      | 48       |
| PIG KIDNEY (trace elements)                                            | ERMBB186    | 40       |
| PIG LIVER (CTC free)                                                   | BCR695      | 48       |
| PIG LIVER (CTC incurred)                                               | BCR696      | 48       |
| PIG LIVER (vitamins)                                                   | BCR487      | 43       |
| PIG MUSCLE (CTC free)                                                  | BCR697      | 48       |
| PLANKTON (trace elements)                                              | BCR414      | 18       |
| PLASMID DNA FRAGMENTS OF 356043 SOYBEAN                                | ERMAD425    | 33       |
| PLASMID DNA FRAGMENTS OF 98140 MAIZE                                   | ERMAD427    | 34       |
| PLASMID DNA FRAGMENTS OF MON 810 MAIZE                                 | ERMAD413    | 30-31    |
| PLASMID DNA FRAGMENTS OF NK603 MAIZE                                   | ERMAD415    | 31       |
| PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film A)                  | BCR537      | 45       |
| PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film B)                  | BCR538      | 45       |
| PLASTIC FILM (OVERALL MIGRATION IN OLIVE OIL (film C)                  | BCR539      | 45       |
| PLATINUM, isotopic, metal                                              | IRMM010     | 67       |
| POLYCHLORODIBENZO-P-DIOXINS (PCDD) AND POLYCHLORODIBENZOFURANS (PCDFs) | BCR614      | 8-14     |
| POLYETHYLENE (40, 75, 200, 400 mg/kg Cd)                               | VDA 001-004 | 66       |
| POLYETHYLENE (LDPE)                                                    | ERMEC590    | 66       |
| POLYETHYLENE (low level)                                               | ERMEC680k   | 66       |
| POLYPROPYLENE (PP)                                                     | ERMEC591    | 66       |
| PORCINE MUSCLE (chloramphenicol blank)                                 | BCR444      | 48       |
| PORK FAT (pesticides)                                                  | ERMBB430    | 38       |
| PORK MUSCLE                                                            | ERMBB124    | 49       |
| PORK MUSCLE                                                            | ERMBB130    | 48       |
| PORK MUSCLE                                                            | ERMBB384    | 41, 44   |
| POTASSIUM CHLORIDE FERTILIZER (elemental composition)                  | BCR113      | 60       |
| POTASSIUM SULPHATE FERTILIZER (elemental composition)                  | BCR114      | 60-61    |
| PROSTATE SPECIFIC ANTIGEN (protein mass)                               | BCR613      | 53       |
| PURIFIED HUMAN ALFAFOETOPROTEIN (protein mass)                         | BCR486      | 52       |
| PYRENE (purity)                                                        | BCR177R     | 6        |
| QUARTZ (1.20 – 20.00 microns)                                          | BCR070      | 57       |

| DESIGNATION                                                          | ERM / CRM | PAGE NO. |
|----------------------------------------------------------------------|-----------|----------|
| QUARTZ (2.50 m <sup>2</sup> /g) (nitrogen BET specific surface area) | BCR172    | 57       |
| QUARTZ (particle size 0.35 – 3.50 microns)                           | BCR066    | 57       |
| QUARTZ (particle size 14 – 90 microns)                               | BCR069    | 57       |
| QUARTZ (particle size 1400 – 5000 microns)                           | BCR132    | 57       |
| QUARTZ (particle size 160 – 630 microns)                             | BCR068    | 57       |
| QUARTZ (particle size 2.40 – 32.00 microns)                          | BCR067    | 57       |
| QUARTZ (particle size 480 – 1800 microns)                            | BCR131    | 57       |
| QUARTZ (particle size 50 – 220 microns)                              | BCR130    | 57       |
| RAPESEED (colza) (S, total glucosinolate, high level)                | ERMBC367  | 38       |
| RAPESEED (colza) (S, total glucosinolate, low level)                 | ERMBC366  | 38       |
| RAPESEED (colza) (S, total glucosinolate, medium level)              | ERMBC190  | 38       |
| RAPESEED (oil, moisture, volatiles)                                  | BCR446    | 45       |
| RAPESEED (oil, moisture, volatiles)                                  | BCR447    | 45       |
| RESIN-BONDED FIBRE BOARD (thermal conductivity)                      | IRMM440   | 55       |
| Rh                                                                   | IRMM529   | 61       |
| RICE (As species)                                                    | ERMBC211  | 24       |
| RICE FLOUR                                                           | IRMM804   | 40       |
| RICE FLOUR ( mylase, low level)                                      | BCR465    | 44       |
| RICE FLOUR ( mylase, medium level)                                   | BCR466    | 44       |
| RICE FLOUR ( mylase, high level)                                     | BCR467    | 44       |
| RIVER SEDIMENT (extractable phosphorous)                             | BCR684    | 22       |
| ROAD DUST (trace elements)                                           | BCR723    | 17       |
| RUBIDIUM (natural) spike, nitrate solution                           | IRMM619   | 68       |
| RUBIDIUM-87 spike, nitrate solution                                  | IRMM618   | 68       |
| RYE FLOUR                                                            | ERMBC381  | 41, 44   |
| RYE GRASS                                                            | ERMCD281  | 18       |
| SALMON TISSUE                                                        | BCR725    | 49       |
| SAXITOXIN IN ACETIC ACID                                             | BCR663    | 28       |
| SCRATCH TESTING                                                      | BCR692    | 57       |
| SEWAGE SLUDGE (Cr)                                                   | BCR597    | 16       |
| SEWAGE SLUDGE (industrial origin) (trace elements)                   | BCR146R   | 16       |
| SEWAGE SLUDGE (mixed origin) (trace elements)                        | BCR145R   | 16       |
| SEWAGE SLUDGE (PCDDs and PCDFs)                                      | BCR677    | 25       |
| SEWAGE SLUDGE AMENDED (terra rossa) SOIL (trace elements)            | BCR484    | 21       |
| SEWAGE SLUDGE AMENDED SOIL (trace elements)                          | BCR143R   | 15       |
| SEWAGE SLUDGE AMENDED SOIL (trace elements)                          | BCR483    | 21       |
| SILICON DIOXIDE, isotopic, solid                                     | IRMM018a  | 68       |
| SILICON, isotopic, Si single crystal                                 | IRMM017   | 68       |
| SIMULATED RAINWATER (major components)                               | ERMCA408  | 20       |
| SINGLE CELL PROTEIN (major elements)                                 | BCR273    | 41       |
| SINGLE CELL PROTEIN (trace elements)                                 | BCR274    | 41       |
| SKIM MILK POWDER                                                     | BCR685    | 45       |
| SKIMMED MILK POWDER (trace elements)                                 | ERMBD150  | 40       |
| SKIMMED MILK POWDER (trace elements)                                 | ERMBD151  | 40       |

| DESIGNATION                                                            | ERM / CRM  | PAGE NO. |
|------------------------------------------------------------------------|------------|----------|
| SOYA-MAIZE OIL BLEND (fatty acid profile)                              | BCR162R    | 42       |
| SPIKED MILK POWDER (pesticides)                                        | BCR188     | 38       |
| SPIKED PORK FAT (low level)                                            | ERMBB446   | 37       |
| SPIKED PORK FAT (very low level)                                       | ERMBB445   | 37       |
| SULPHUR-32 spike, nitrate solution                                     | IRMM643    | 69       |
| SULPHUR-32 spike, nitrate solution                                     | IRMM644    | 69       |
| SULPHUR-32 spike, nitrate solution                                     | IRMM645    | 69       |
| SULPHUR-34 spike, nitrate solution                                     | IRMM646    | 69       |
| SUPERPHOSPHATE (various parameters)                                    | BCR033     | 60       |
| TANTALUM PENTOXIDE ON TANTALUM FOIL                                    | BCR261T    | 58       |
| TETRAMETHYLUREA                                                        | STA003m    | 28       |
| THALLIUM (natural) spike, nitrate solution                             | ERMAE649   | 69       |
| THERMALLY REFINED LEAD (trace elements)                                | BCR287A, B | 62       |
| THROMBOPLASTIN RABBIT (prothrombin time)                               | ERMAD149   | 55       |
| THYROXINE (T4)                                                         | IRMM468    | 50       |
| Ti                                                                     | IRMM531    | 61       |
| Ti 6AL 4V ALLOY (O)                                                    | BCR059A, B | 62       |
| TiAl6V4 (Al, V)                                                        | BCR089     | 64       |
| TIN ORE CONCENTRATE (Sn)                                               | BCR010     | 60       |
| TITANIA (8.23 m <sup>2</sup> /g) (nitrogen BET specific surface area)  | BCR173     | 57       |
| TITANIUM (H)                                                           | BCR318     | 62       |
| TITANIUM (impurities)                                                  | BCR090A, B | 64       |
| TITANIUM (O, N)                                                        | BCR024B, C | 62       |
| TOasted BREAD                                                          | ERMBD273   | 49       |
| TRACE ELEMENTS IN WHITE CABBAGE                                        | BCR679     | 48       |
| TRIPHENYLENE (purity)                                                  | BCR270     | 6        |
| TUNA FISH (total and methylmercury)                                    | ERMCE464   | 20       |
| TUNA FISH (total and methylmercury)                                    | BCR463     | 20       |
| TUNA FISH TISSUE (As species)                                          | BCR627     | 21       |
| TUNGSTEN (0.18 m <sup>2</sup> /g) (nitrogen BET specific surface area) | BCR175     | 57       |
| TUNGSTEN CARBIDE POWDER (O)                                            | BCR102     | 62       |
| UNALLOYED ZINC (disc) (trace elements)                                 | BCR326     | 63       |
| UNALLOYED ZINC (disc) (trace elements)                                 | BCR327     | 63       |
| UNALLOYED ZINC (trace elements)                                        | ERMEB322   | 63       |
| UNALLOYED ZINC (trace elements)                                        | ERMEB323   | 63       |
| UNALLOYED ZINC (trace elements)                                        | ERMEB324   | 63       |
| UNALLOYED ZINC (trace elements)                                        | ERMEB325   | 63       |
| UNALLOYED ZINC (trace elements)                                        | BCR321     | 63       |
| URBAN DUST (trimethyllead)                                             | BCR605     | 23       |
| UREA FERTILIZER (composition)                                          | BCR179     | 61       |
| WASTE MINERAL OIL (high PCB level)                                     | BCR449     | 26       |
| WASTE MINERAL OIL (low PCB level)                                      | BCR420     | 26       |
| WELDING DUST LOADED ON FILTER (Cr VI, Cr)                              | BCR545     | 23       |
| WHEAT (ochratoxin A, blank)                                            | BCR471     | 39       |

| DESIGNATION                                  | ERM / CRM | PAGE NO. |
|----------------------------------------------|-----------|----------|
| WHEAT FLOUR                                  | ERMBC382  | 41, 44   |
| WHEAT FLOUR (deoxynivalenol blank)           | BCR396    | 39       |
| WHITE CLOVER (trace elements)                | BCR402    | 18       |
| WHOLE MILK POWDER (aflatoxin M1, high level) | ERMBD284  | 39       |
| WHOLE MILK POWDER (aflatoxin M1, low level)  | ERMBD283  | 39       |
| WHOLE MILK POWDER (aflatoxin M1, zero level) | ERMBD282  | 39       |
| WHOLE MILK POWDER (major nutrients)          | BCR380R   | 45       |
| WHOLE MILK POWDER (vitamins)                 | ERMBD600  | 43       |
| WHOLEMEAL FLOUR (vitamins)                   | BCR121    | 43       |
| WINE (EtOH, low level)                       | BCR653    | 44       |
| ZEARALENONE IN ACETONITRILE                  | ERMAC699  | 28       |
| ZINC ORE CONCENTRATE (trace elements)        | BCR109    | 65       |
| ZINC-64 spike, nitrate solution              | IRMM3702  | 69       |
| ZINC-64 spike, nitrate solution              | IRMM651   | 69       |
| ZINC-64 spike, nitrate solution              | IRMM652   | 69       |
| ZINC-67 spike, nitrate solution              | IRMM653   | 69       |
| ZINC-68 spike, nitrate solution              | IRMM654   | 69       |
| ZIRCALOY (C, N, O)                           | BCR275    | 62       |
| ZIRCALOY (C, N, O)                           | BCR276    | 62       |
| ZnAl4 (trace elements)                       | BCR351    | 63       |
| ZnAl4 (trace elements)                       | BCR352    | 63       |
| ZnAl4 (trace elements)                       | BCR353    | 63       |
| ZnAl4 (trace elements)                       | BCR354    | 63       |
| ZnAl4 (trace elements)                       | BCR355    | 63       |
| ZnAl4Cu1 (trace elements)                    | BCR356    | 63       |
| ZnAl4Cu1 (trace elements)                    | BCR357    | 63       |
| ZnAl4Cu1 (trace elements)                    | BCR359    | 63       |
| ZnAl4Cu1 (trace elements)                    | BCR360    | 63       |
| ZnAl4Cu1 (trace elements)                    | BCR361    | 63       |

# Application Note 1



## Comparison of a measurement result with the certified value

The comparison of a measurement result on a certified reference material with the certified value is explained. The method compares the difference between the certified and measured values with its uncertainty, i.e. the combined uncertainty of certified and measured value. Guidance on how to determine the standard uncertainties of certified values as well as standard uncertainties of measurement results is given.

January 2010

**Author:** Thomas Linsinger

European Commission - Joint Research Centre  
Institute for Reference Materials and  
Measurements (IRMM)  
Retieseweg 111, 2440 Geel, Belgium  
Email: thomas.linsinger@ec.europa.eu  
[www.erm-crm.org](http://www.erm-crm.org)

### INTRODUCTION

One of the most frequent applications of certified reference materials is validation of measurement procedures. To achieve this, measurements on certified reference materials are performed and the results are compared with the certified values. This comparison is often described in a qualitative manner such as measurement results "agree", "agree well" or even "agree perfectly" with the certified values. However, a structured and quantitative approach exists that allows making a statement on the evidence of any bias.

This approach takes into account the certified value, the measurement result and their respective uncertainties. These uncertainties are subsequently combined and the expanded uncertainty is compared to the difference. This note will explain the procedure of the uncertainty estimation and the comparison of results with a certified value.

### BASIC PRINCIPLES

After the measurement of a CRM the absolute difference between the mean measured value and the certified value can be calculated as

$$\Delta_m = |c_m - c_{CRM}|$$

$\Delta_m$ ..... absolute difference between mean measured value and certified value  
 $c_m$ ..... mean measured value  
 $c_{CRM}$ ..... certified value

Each measurement has an uncertainty  $u_m$  as described in the ISO Guide to the Expression of Uncertainty in Measurement (GUM) [1] and the Eurachem/CITAC Guide "Quantifying Uncertainty in Analytical Measurement" [2]. This means, any measurement result is only known within the limits of this uncertainty. Similarly, the certified value of a CRM is only known with a specified uncertainty  $u_{CRM}$  stated on the certificate. Uncertainties are usually expressed as standard deviations, but only the variances (the squared standard deviations)

are additive. The uncertainty of  $\Delta_m$  is  $u_\Delta$ , that is calculated from the uncertainty of the certified value and the uncertainty of the measurement result according to

$$u_\Delta = \sqrt{u_m^2 + u_{CRM}^2}$$

$u_\Delta$ ..... combined uncertainty of result and certified value (= uncertainty of  $\Delta_m$ )

$u_m$ ..... uncertainty of the measurement result

$u_{CRM}$ ..... uncertainty of the certified value

The expanded uncertainty  $U_\Delta$ , corresponding to a confidence level of approximately 95 %, is obtained by multiplication of  $u_\Delta$  by a coverage factor ( $k$ ), usually equal to 2.

$$U_\Delta = 2 \cdot u_\Delta$$

$U_\Delta$ ..... expanded uncertainty of difference between result and certified value

**To evaluate method performance,  $\Delta_m$  is compared with  $U_\Delta$ : If  $\Delta_m \leq U_\Delta$  then there is no significant difference between the measurement result and the certified value.**

### DETERMINATION OF THE INDIVIDUAL UNCERTAINTIES

#### **Uncertainty of the certified value**

The expanded uncertainties  $U_{CRM}$  of each certified value are given on the certificate. Each ERM®-certificate also contains in a footnote an explanation of the derivation of the uncertainty (see Figs. 1 and 2). In most cases, the coverage factor is explicitly stated, (an example can be seen in Fig. 1). The standard uncertainty,  $u_{CRM}$ , of the certified value is obtained by dividing the stated expanded uncertainty by the coverage factor.

In some cases, the uncertainty is the 95 % confidence interval of the mean of laboratory means (for an example see Fig. 2). In this case, the t-factor for a 95 % confidence level

with  $n-1$  degrees of freedom ( $n$  being the number of laboratories) needs to be determined from statistical tables. [Alternatively, the factor can be derived in MS Excel® using the function  $tinv(0.05, n-1)$ ]. The standard uncertainty of the certified value  $u_{CRM}$  is then obtained by dividing the stated expanded uncertainty by the  $t$ -factor.

### Uncertainty of the measured value

According to ISO/IEC 17025 [3], measurement uncertainties must be known for each measurement. In the absence of full uncertainty budgets, several approximations exist (ranked in decreasing usefulness) to estimate measurement uncertainties:

- 1) The within-laboratory reproducibility standard deviation (intermediate precision) as determined from e.g. quality control charts can be used as (rough) estimation of  $U_m$ .
- 2) A reproducibility standard deviation from other sources (e.g. the certification reports available on [www.erm-crm.org](http://www.erm-crm.org) or an interlaboratory comparison) can be used after it has been proven that the laboratory's performance is equivalent to the performance of the participants in the study in question.
- 3) The standard deviation of the measurements can be used as very rough estimation. This estimation is typically underestimating the real uncertainty.

### EXAMPLE ERM-BB445 (PCBs IN PORK FAT)

PCB 52: certified value =  $(12.9 \pm 0.9) \mu\text{g/kg}$ . Footnote 2 of the certificate states that a coverage factor of  $k = 2$  was applied.  $u_{CRM}$  is therefore  $0.9/2 \mu\text{g/kg} = 0.45 \mu\text{g/kg}$ .

The laboratory measurements gave an average of  $(14.3 \pm 1.8) \mu\text{g/kg}$  (single standard deviation of 6 measurements spread over three weeks). The standard deviation is divided by the square root of the number of measurements, as the average of the results is compared with the certified value.  $u_m$  is therefore estimated as  $1.8/\sqrt{6} \mu\text{g/kg} = 0.74 \mu\text{g/kg}$ .

$$\Delta_m = |c_m - c_{MRC}| = |14.3 - 12.9| \mu\text{g/kg} = 1.4 \mu\text{g/kg}$$

$$u_\Delta = \sqrt{u_m^2 + u_{CRM}^2} = \sqrt{0.74^2 + 0.45^2} \mu\text{g/kg} = 0.87 \mu\text{g/kg}$$

The expanded uncertainty  $U_\Delta$  is  $2 \cdot u_\Delta = 1.7 \mu\text{g/kg}$ . This is larger than the difference  $\Delta_m$  between the certified and the measured value. The measured mean value is therefore not significantly different from the certified value.

ERM® - BB445

| PORK FAT                           |                                                       |                                                   |
|------------------------------------|-------------------------------------------------------|---------------------------------------------------|
| Ballschmiter No. (Congener name)   | Mass fraction                                         |                                                   |
|                                    | Certified value <sup>2)</sup><br>[ $\mu\text{g/kg}$ ] | Uncertainty <sup>3)</sup><br>[ $\mu\text{g/kg}$ ] |
| 28 (2,4,4'-Trichlorobiphenyl)      | 14.8                                                  | 1.3                                               |
| 52 (2,2',5,5'-Tetrachlorobiphenyl) | 12.9                                                  | 0.9                                               |

<sup>1)</sup> As obtained by quantification using GC methods.

<sup>2)</sup> Unweighted mean value of the means of 8 accepted sets of data, each set being obtained in a different laboratory and with a different method of determination. The certified value and its uncertainty are traceable to the International System of Units (SI).

<sup>3)</sup> Estimated expanded uncertainty  $U$  with a coverage factor  $k = 2$  corresponding to a level of confidence of about 95% defined in the Guide to the Expression of Uncertainty in Measurement (GUM), ISO, 1995. Uncertainty contributions are

Figure 1: Certificate with expanded uncertainty. The standard uncertainty of the certified value ( $u_{CRM}$ ) is obtained by dividing the expanded uncertainty by the coverage factor (in this case: 2; marked in red)

ERM® - CC580

| ESTUARINE SEDIMENT       |                                   |                             |
|--------------------------|-----------------------------------|-----------------------------|
| Parameter                | Mass fraction (based on dry mass) |                             |
|                          | Certified value <sup>1)</sup>     | Uncertainty <sup>2)</sup>   |
| Total Hg                 | 132 mg / kg                       | 3 mg / kg                   |
| $\text{CH}_3\text{Hg}^*$ | 75 $\mu\text{g} / \text{kg}$      | 4 $\mu\text{g} / \text{kg}$ |

1) Unweighted mean value of the means of 11 to 13 accepted sets of data, each set being obtained in a different laboratory and / or with a different method of determination. Certified value is based on dry mass. The certified values are traceable to SI.

2) The certified uncertainty is the half-width of the 95 % confidence interval of the mean defined in the GUM.  $k$ -factors were chosen according to the t-distribution depending of the number of accepted sets of results and were 2.179 for total Hg and 2.228 for  $\text{CH}_3\text{Hg}$ .

Figure 2: Certificate with a confidence interval. The standard uncertainty of the certified value ( $u_{CRM}$ ) is obtained by dividing the expanded uncertainty (in this case: 4 for  $\text{CH}_3\text{Hg}$ ) by the coverage factor (in this case: 2.228; marked in red)

1 International Standards Organisation (1993) Guide to the expression of uncertainty in measurement. ISO, Geneva. ISBN 92-67-10188-9

2 Ellison SLR, Roesslein M, Williams A (eds) (2000) EURACHEM/CITAC Guide: Quantifying uncertainty in analytical measurement, 2nd edn. EURACHEM. ISBN 0-948926-15-5. Available via <http://www.eurachem.com>

3 International Standards Organisation (1999) ISO/IEC 17025: General Requirements for the competence of calibration and testing laboratories. ISO, Geneva

# Application Note 2a



February 2011

## Using Reference Materials for Calibration. Background

As the first in a series dedicated to calibration, this note explains principles for the use of reference materials in analytical calibration, that is, calibration for the purpose of determining the response behaviour of analytical instruments. Issues addressed include the estimation and use of calibration uncertainty, and requirements on reference materials for calibration. ERM® are perfectly suited for this purpose, because they fulfil the stated requirements.

### INTRODUCTION

One of the basic requirements of ISO/IEC 17025 is that all equipment having a significant effect on the accuracy or validity of measurement results provided by a laboratory shall be calibrated before being put into service. To this end, laboratories, especially accredited ones, must have an established calibration programme which ensures that measurements are traceable [1] to the International System of Units (SI) or to other agreed references.

The term "calibration" is currently defined in reference [1] as the

"operation that, under specified conditions, in a first step, establishes a relation between the **quantity values** with measurement uncertainties provided by **measurement standards** and corresponding **indications** with associated **measurement uncertainties** and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication".

For a chemist in an analytical laboratory this general definition means that calibration determines the relationship between measured instrumental response and amount of the substance to be determined (the analyte) using appropriate calibration materials, and also the calculation used to obtain the result from a new observation. Establishing this relationship is key to establishing traceability to SI units or other appropriate references.

### ANALYTICAL CALIBRATION: FOCUS ON INSTRUMENTAL RESPONSE

Analytical instruments are typically calibrated using one or more calibration materials containing known amounts of the analyte. Most often these are synthetic materials such as calibration solutions, prepared from pure substances, but for special analytical techniques

(e.g. direct analysis of solid samples by SS-AAS or XRF) matrix materials are used for calibration.

### PRINCIPLES OF CALIBRATION: SINGLE-POINT CALIBRATION

#### 1) Calibration

The basic principles of calibration can be illustrated by the simplest case: single-point calibration. This is used when the instrumental response (such as the peak area in a chromatogram) is, perhaps after baseline correction, strictly proportional to the amount of analyte. Then calibration may be carried out at a single level, by replicate analyses of a single calibration material. From the calibration data ( $\bar{y}_{cal}$  is the mean value of response;  $x_{cal}$  is the reference value of analyte amount) the response factor is determined according to

$$F = \frac{\bar{y}_{cal}}{x_{cal}} \quad (1)$$

The response factor is then used to convert instrumental response data  $y_{samp}$  obtained on other samples into analyte amounts  $x_{samp}$  according to

$$x_{samp} = \frac{y_{samp}}{F} \quad (2)$$

Equations (1) and (2) illustrate the two steps in calibration; establishing a relationship between reference value  $x_{cal}$  and response  $y$ , and then using this to derive a calculation to predict values  $x_{samp}$  from new measured values  $y_{samp}$ .

#### 2) Calibration uncertainty

Like any other measurement result the result of a calibration – whether calculated using a factor or a function summarising the calibration data – has an associated uncertainty. This uncertainty has to be included in the uncertainty budget of any result obtained using the calibrated equipment [2,3]. In the case of single-level calibration the uncertainties directly associated with calibration may be expressed as follows:

$$\frac{u_{cal}(x_{samp})}{x_{samp}} = \sqrt{\left(\frac{s(y_{samp})}{y_{samp}}\right)^2 + \left(\frac{s(\bar{y}_{cal})}{\bar{y}_{cal}}\right)^2 + \left(\frac{u(x_{cal})}{x_{cal}}\right)^2} \quad (3)$$

In this expression, all the terms are in the form of relative standard uncertainties.  $u_{cal}(x_{samp})$  is the uncertainty in  $x_{samp}$  arising from calibration. The different terms on the right represent, respectively:

- the uncertainty arising from variation in the response obtained on a sample,
- the uncertainty arising from variation in the response from calibration material,
- the uncertainty associated with the reference value used in calibration.

All of these uncertainty contributions are combined as a root sum of squares.

**Note:** There are usually other sources of uncertainty in a complete measurement. These can often be combined with the calibration uncertainty by simple extension of equation (3). Details can be found in references [2] and [3].

The structure of the uncertainty budget described here can be used for other calibration designs, by combining the following contributions to the standard uncertainty of the result:

- the variability of measurements for the given sample, expressed as a standard deviation;
- the variability of measurements on calibration materials, expressed as a standard deviation;
- the standard uncertainty of the reference values attributed to the calibration materials.

The standard uncertainty reported to the customers additionally requires the analyst to consider the standard uncertainty associated with other effects not covered by the calibration.

## MATRIX EFFECTS

The sample matrix can bias the analyte signal through spectral and non-spectral interference effects. Non-spectral interferences or matrix effects as they are often known, are characterized by changes in signal intensity that are matrix-induced and not related to spectral overlap. Matrix effects can lead to signal

suppression, as well as signal enhancements. An important issue is that matrix effects often depend on the absolute matrix concentration not on the relative concentration of matrix to analyte. Matrix effects can be reduced by simply diluting the sample (if permitted by analyte concentration) or corrected for by certain calibration strategies such as internal standardisation, standard addition, matrix-matched calibration or isotope dilution mass spectrometry. More details on matrix effects and calibration strategies compensating for that can be found in the following literature [4,5].

## REQUIREMENTS FOR CALIBRATION MATERIALS

Calibration materials have to be sufficiently homogeneous and stable so as to ensure that the assigned property values (including uncertainty) are valid for any portion of the calibration sample taken and utilised according to the supplier's specification. In addition, technical requirements for calibration materials are case-dependent and cannot be summarised in a single application note. The only generic requirements that can be addressed here concern the information provided for a calibration material:

- For each reference value (analyte concentration)  $x_{ref}$  the standard uncertainty  $u(x_{ref})$  has to be specified, either directly or by way of specifying an expanded uncertainty  $U(x_{ref})$  with the associated coverage factor  $k$ . In addition a statement of traceability is required (Application Note 3 "Using Reference Materials to Establish Traceability").
- For matrix materials, the matrix needs to be specified in sufficient detail to enable comparison with sample matrices where analyte-matrix interferences may occur.

## EXAMPLES

Examples are explained in Application Note 2b "Using Reference Materials for Calibration. Examples".

- [1] International Vocabulary of Metrology — Basic and General Concepts and Associated Terms, 3<sup>rd</sup> edition (VIM 3) available from <http://www.bipm.org> or as ISO/IEC Guide 99-12:2007
- [2] Hässelbarth W, Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results, Eurolab Technical Report No. 1/2006, [www.eurolab.org](http://www.eurolab.org)
- [3] Ellison SLR, Williams A, Roesslein M (Eds.): Quantifying Uncertainty in Analytical Measurement 2<sup>nd</sup> Ed. (2000). Eurachem/CITAC Guide, available at [www.eurachem.org](http://www.eurachem.org).
- [4] Thompson M, Ellison SLR, Analytical Methods Committee Report: A review of interference effects and their correction in chemical analysis with special reference to uncertainty, Accred Qual Assur (2005) 10:82–97
- [5] Vogl J, *Calibration strategies and quality assurance*, in Nelms S (ed.) "ICP Mass Spectrometry", Blackwell Publishing Ltd. (2005) 147-181

# Application Note 2b

## Using Reference Materials for Calibration. Examples - Determination of Kavain by HPLC-UV

ERM<sup>®</sup>-AC020a, kavain, is a CRM with a certified purity of 99.8 ± 0.2 mass %. The intended use of this material is for the calibration of methods for the determination of kavain in herbal products, foodstuffs and other relevant matrices. This example shows how ERM<sup>®</sup>-AC020a can be used as a calibrant to determine the amount of kavain in a solution of unknown concentration, and estimates the uncertainty of the calibration.

### CALIBRATION DATA

Five calibration standards from a certified reference material (CRM) of well-defined purity and uncertainty (ERM<sup>®</sup>-AC020a kavain) plus a blank were prepared. Standards were prepared in 1 % formic acid in acetonitrile. Chrysin was used as internal standard (IS) with a fixed mass fraction for all calibration standards and samples. The calibration standards were approximately equally spaced across the intended calibration range.

The peak height ratios (compared to the chrysin internal standard) were plotted against the corresponding kavain mass fractions and the regression parameters for the calibration line were calculated. The regression line and the regression parameters can be obtained, when plotting the data in Microsoft Excel<sup>®</sup> and using the tool "regression".

Table 1: Observed calibration data

| Calibration standard | Kavain mass fraction in µg/g | Observed peak height relative to IS |
|----------------------|------------------------------|-------------------------------------|
|                      | $x_{cal}$                    | $y_{cal}$                           |
| 1                    | 0.0000                       | 0.00000                             |
| 2                    | 20.000                       | 0.53576                             |
| 3                    | 40.000                       | 1.06537                             |
| 4                    | 60.000                       | 1.58447                             |
| 5                    | 80.000                       | 2.11463                             |
| 6                    | 100.00                       | 2.65250                             |

With this plot (Fig. 1) the regression line can be obtained in the following form:

$$y = a \cdot x + b \quad (1)$$

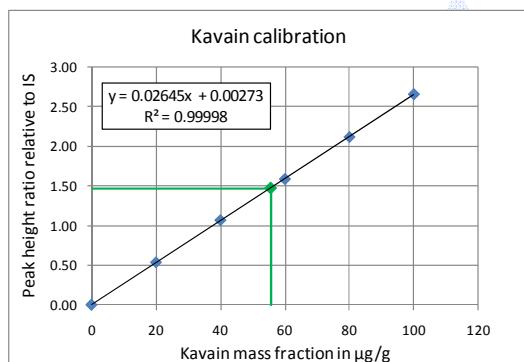



Fig. 1: Plot of the calibration data (blue) together with the regression line (black) and the results obtained for the unknown sample (green)

For the kavain calibration the parameters a and b are as follows:

Slope a: 0.02645 g/µg  
Intercept b: 0.00273

Inspection of the calibration line gave no reason to suspect non-linearity, and inspection of the residuals showed no obvious trend. The calibration achieved the required correlation coefficient of at least 0.999.

The prepared solution of an unknown sample was analysed and a peak height ratio of 1.47200 was obtained. Applying the regression equation from above and introducing the peak height ratio as  $\bar{y}_{samp} = 1.47200$  a kavain mass fraction of  $x_{samp} = 55.5490 \mu\text{g/g}$  can be calculated.

### CALIBRATION UNCERTAINTY

To calculate the uncertainty contribution for the kavain mass fraction in the sample deriving from the calibration, we start with the following equation (equation 3 in Application Note 2a):

$$\frac{u_{cal}(x_{samp})}{x_{samp}} = \sqrt{\left(\frac{s(y_{samp})}{y_{samp}}\right)^2 + \left(\frac{s(\bar{y}_{cal})}{\bar{y}_{cal}}\right)^2 + \left(\frac{u(x_{cal})}{x_{cal}}\right)^2} \quad (2)$$

To estimate the uncertainty associated with random variation in the observations in the calibration and in the observation of the peak height for the unknown sample, the prediction interval  $s_{x_{samp}}$  for predicted values of x is used.

This is calculated from the following equation:

$$s_{x_{samp}} = \frac{s(r)}{a} \sqrt{\frac{1}{N} + \frac{1}{n} + \frac{(\bar{y}_{samp} - \bar{y}_{cal})^2}{a^2 \sum_{i=1}^n (x_i - \bar{x}_{cal})^2}} \quad (3)$$

N is the number of observations used to obtain the value  $\bar{y}_{samp}$

$\bar{y}_{samp}$  is the arithmetic mean of peak height ratios determined for the unknown sample

$\bar{y}_{cal}$  is the arithmetic mean of the observed peak height ratios  $y_{cal}$  of the calibration standards in Table 1

$\bar{x}_{cal}$  is the arithmetic mean of the kavain mass fractions in the calibration standards in Table 1

$x_i$  is the kavain mass fraction in the calibration standard  $i$   
 $n$  is the number of  $(x, y)$  pairs used in the regression  
 $a$  is the estimated slope of the regression line.

The terms  $s(y_{\text{samp}})$  and  $s(\bar{y}_{\text{cal}})$  can be identified in equation (3) and therefore equation (2) can be modified as follows:

$$\frac{u_{\text{cal}}(x_{\text{samp}})}{x_{\text{samp}}} = \sqrt{\left(\frac{s_{x_{\text{samp}}}}{x_{\text{samp}}}\right)^2 + \left(\frac{u(x_{\text{cal}})}{x_{\text{cal}}}\right)^2} \quad (4)$$

The residual standard deviation  $s(r)$  in equation (3) is given by

$$s(r) = \sqrt{\sum_{i=1}^n r_i^2 / (n-2)} \quad (5)$$

where the residuals  $r_i$  are the differences between observed and predicted value for the peak height. The predicted values can be obtained by inserting the kavain mass fractions of the calibration standards  $x_{\text{cal}}$  (Table 1) in the equation (1) of the regression line and calculate  $y_{\text{cal}}$ . These predicted values  $y_{\text{cal}}$  and the corresponding residuals are given in the Table 2.

Table 2: Predicted values for the peak height ratios and resulting residuals

| Observation | Predicted $y_{\text{cal}}$ | Residuals $r_i$ |
|-------------|----------------------------|-----------------|
| 1           | 0.00273                    | -0.00273        |
| 2           | 0.53182                    | 0.00394         |
| 3           | 1.06091                    | 0.00446         |
| 4           | 1.59000                    | -0.00553        |
| 5           | 2.11909                    | -0.00446        |
| 6           | 2.64819                    | 0.00431         |

With the residuals  $r_i$  from the table above  $s(r)$  can be calculated as follows:

$$s(r) = \sqrt{\frac{0.000112}{(6-2)}} = 0.00529$$

This result is being inserted together with the other required data in equation (3):

$$s_{x_{\text{samp}}} = \frac{0.00529}{0.02645} \sqrt{\frac{1}{1} + \frac{1}{6} + \frac{(1.47200 - 1.32546)^2}{0.02645^2 \times 7000}} = 0.21643 \mu\text{g/g}$$

This gives the uncertainty associated with variability in observations in the calibration and in the observation of the peak height for the unknown sample. Dividing by the calculated mass fraction in the sample we can express this as a relative standard uncertainty as follows:

$$(0.21643 \mu\text{g/g}) / (55.5490 \mu\text{g/g}) = 0.00390.$$

The term  $u(x_{\text{cal}})$  has uncertainty contributions from the CRM used to prepare the calibration standards and the preparation of these standards; here only dilution occurs:

$$\frac{u(x_{\text{cal}})}{x_{\text{cal}}} = \sqrt{\left(\frac{u_{\text{CRM}}}{x_{\text{CRM}}}\right)^2 + \left(\frac{u(x_{\text{dil}})}{x_{\text{dil}}}\right)^2} \quad (6)$$

$u_{\text{CRM}}$  is obtained from the calibration material certificate. The CRM has a certified value of 99.8 mass % kavain with a value for the standard uncertainty,  $u_{\text{CRM}}$ , of 0.075 mass % or expressed as a relative standard uncertainty (and an expanded uncertainty,  $U_{\text{CRM}}$ , of 0.2 mass %, calculated by  $U_{\text{CRM}}=k \cdot u_{\text{CRM}}$  with a coverage factor  $k = 2.45$ ):  
 $(0.075 \%) / (99.8 \%) = 0.00075$ .

For the preparation of the calibration standards, we assume that the relative standard uncertainty associated with volumetric operations in preparing the calibration solutions is 0.001. Combining all the terms as relative standard uncertainties, gives the relative calibration uncertainty:

$$\frac{u_{\text{cal}}}{55.5490} = \sqrt{0.00390^2 + 0.00075^2 + 0.00100^2} = 0.00410$$

Converting this relative uncertainty to the units in which the result is expressed gives the calibration uncertainty  $u_{\text{cal}}$  as:

$$55.5490 \mu\text{g/g} \times 0.00410 = 0.22775 \mu\text{g/g}$$

Uncertainties and uncertainty contributions are usually rounded to a maximum of two significant digits. Subsequently the quantity value, here the kavain mass fraction in the sample, is rounded so that the total number of digits agrees with the uncertainty.

This results in a kavain mass fraction  $x_{\text{samp}}$  with the uncertainty contribution for the calibration  $u_{\text{cal}}$ :

$$x_{\text{samp}} = 55.55 \mu\text{g/g}$$

$$u_{\text{cal}} = 0.23 \mu\text{g/g}$$

Finally, note that this estimates the uncertainty associated with calibration. It does not include the (usually much larger) uncertainties associated with extraction efficiency, test sample preparation, matrix effects, test material inhomogeneity or operator effects. However, it is useful in deciding whether the calibration procedure is suitable for its intended use.

## NOTE

In addition to calibration using pure substances, it is also possible to use matrix calibrants. Often this is preferred for non-destructive testing, solid sampling techniques or when strong matrix effects occur. Examples are the quantification of toxic metals in plastic by XRF or the quantification of sulfur in fuel applying the combustion-UV-fluorescence technique.

Suitable CRMs for toxic metals in plastic are ERM<sup>®</sup>-EC680k and ERM<sup>®</sup>-EC681k; suitable CRM for sulfur in fuel are ERM<sup>®</sup>-EF211, ERM<sup>®</sup>-EF212a and ERM<sup>®</sup>-EF213.

# Application Note 3



## Using Reference Materials to Establish Traceability.

August 2006

*Traceability of measurements enables results to be compared across space and time and is a requirement of ISO/IEC 17025. This note describes the steps that need to be applied to chemical measurement methods to ensure traceability of the results. Reference materials are essential to achieving traceability of measurement results. The ERM® range of certified reference materials are produced by three of Europe's top metrology institutions. ERM® reference materials have stated traceabilities and provide a means of ensuring reliability and comparability of the results of chemical analysis.*

### INTRODUCTION

All chemical measurement results depend upon and are ultimately traceable to the values of measurement standards of various types, such as those for mass, volume and the amount of a particular chemical species. If results obtained by different laboratories are to be comparable, it is essential that all results are based on reliable measurement standards whose values are linked to a stated reference. If there are differences in the quality of the measurement standards used in different laboratories, discrepancies will inevitably arise when different laboratories analyse the same sample. It is a requirement of standards such as ISO/IEC 17025 [1] that test results should be traceable, preferably to national or international standards.

### DEFINITION

*"Traceability is a property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties" [2].*

### TRACEABLE MEASUREMENTS

The value of the result for an unknown quantity obtained from a comparison with the value of a calibration standard (where the uncertainty of the result is the uncertainty of this comparison plus the uncertainty of the standard) is traceable to the value of the calibration standard provided the method used for the comparison is *valid* and its *uncertainty* is known.

#### **Application to chemical measurements**

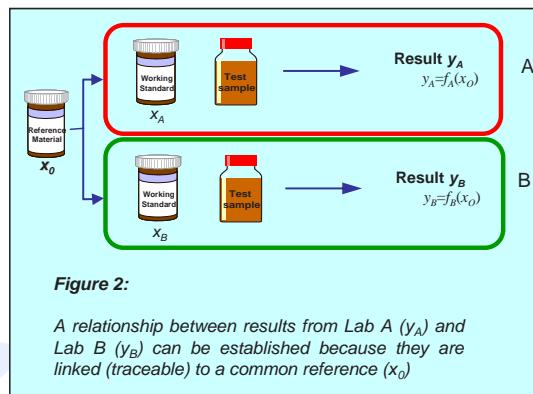
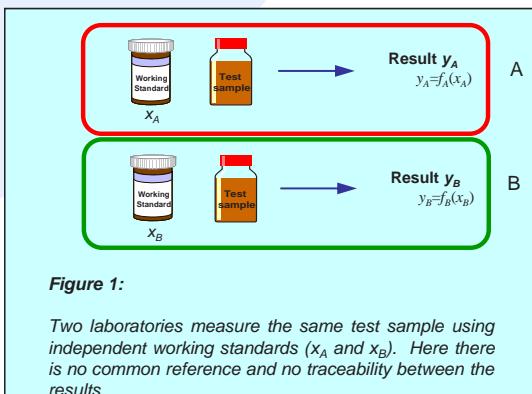
Method development establishes an optimised procedure which can be used to compare a

#### **Author:**

LGC Limited  
Queens Road  
Teddington  
Middlesex, TW11 0LY, UK  
Email: [steve.wood@lgc.co.uk](mailto:steve.wood@lgc.co.uk)  
[www.erm-crm.org](http://www.erm-crm.org)

sample and standard. Validation shows that, in terms of its performance, this procedure is fit for the purpose in hand and has the appropriate uncertainty.

Calibration establishes the relationships between the values provided by the measurement system with the values of the reference standards.



Traceability or control has to be established for each parameter specified in the procedure. Traceability is established through the use of measurement standards (e.g. certified reference materials) which are appropriate for each parameter. These certified reference materials are selected on the basis of fitness for purpose.

#### **Establishing Traceable Results**

The following steps are necessary to establish traceable results [3]:

- 1) Specify the measurand and acceptable uncertainty.
- 2) Choose a suitable method of estimating the value, *i.e.* a measurement procedure with associated calculation (equation) and measurement conditions.
- 3) Demonstrate (validation) that the calculation and measurement conditions include all the 'influence quantities' that significantly affect the result.
- 4) Identify relative importance of each influence quantity. A methodology to help analysts categorise the degree of control to be applied to realising a particular experimental value has been developed [4].
- 5) Choose and apply appropriate certified reference materials and standards.
- 6) Estimate the uncertainty of the result.

Figures 1 and 2 show how calibration using a common reference material provides traceability between laboratories and allows a meaningful comparison of results.



## A STRATEGY FOR ESTABLISHING TRACEABILITY

### To achieve traceability

- The method must be properly validated and applied within its stated scope. If not, erroneous results may still be produced, even if all measurements and standards are traceable.
- The method must be carried out using the **appropriate stated references**.

### Key steps to select the appropriate stated references

- Write down and understand the equation used to calculate the analytical result.
- Identify any 'reagents' or equipment with specified values.
- Identify the fixed conditions used in the method.
- Obtain appropriate 'stated references'.

### What are 'appropriate stated references'?

- Any 'reference point' that an analyst uses to obtain or realise a particular quantity or value in practice.
- Physical calibrations are well established, e.g. calibrated weight; reference thermometer; volumetric glassware; stopwatch.
- Chemical calibrations can be established in the same way using pure or matrix certified reference materials (calibrants) and well-characterised pure materials.

### What is appropriate?

- The analyst must decide, based on:
  - The degree of control that is required in obtaining or realising a particular value in practice.
  - The extent to which the quantity affects the result.
  - The uncertainty of each stated reference must be appropriate.

1 International Standards Organisation (2005) ISO/IEC 17025: General Requirements for the competence of testing and calibration laboratories. ISO, Geneva

2 International Vocabulary of Basic and General Terms in Metrology. ISO, Geneva, 1993, 2nd edition. ISBN 92-67-01075-1

3 Eurachem/CITAC 2003, Traceability in Chemical Measurement. A Guide to achieving comparable results in chemical measurements ([www.eurachem.ul.pt](http://www.eurachem.ul.pt))

4 Meeting the Traceability Requirements of ISO/IEC 17025. An Analyst's Guide. 3rd Edition. V Barwick and S Wood (Editors), LGC Limited, September 2005. ISBN 0-948926-23-6

# Application Note 4



## Use of Certified Reference Materials for the quantification of GMO in food and feed

This application note provides guidance on the correct use of IRMM's Reference Materials certified for their GM (genetically modified) mass fraction of a specific GM event.

The details given below refer particularly to the use of the CRMs ERM-BF410, ERM-BF411, ERM-BF412, ERM-BF413, ERM-BF414, ERM-BF415, ERM-BF416, ERM-BF417, ERM-BF418 and ERM-BF423.

### INTRODUCTION

Legislation (EC) No 1830/2003 demands the labelling of food and feed products consisting of or containing more than 0.9 % genetically modified organisms (GMOs), provided the GMO has been placed on the European market in accordance with Community legislation. Therefore, quantification of GM in such products has to be performed in a reliable manner. Appropriate Certified Reference Materials (CRMs) are indispensable quality assurance tools for this.

### GMO CRM CHARACTERISTICS

The certified values of the CRMs listed above are based on the masses of dried genetically modified seed powder and dried non-genetically modified seed powder used in the gravimetric preparation. The masses are corrected for their water content and the purity estimates. The GM mass fraction is calculated as:

$$\frac{\text{corrected mass GM powder}}{\text{corrected mass GM powder} + \text{corrected mass non-GM powder}}$$

Each GMO CRM is certified for a mass fraction of a specific genetic modification event (as stated on the certificate). Consequently, the CRM can only be used to quantify the event indicated on the certificate and the corresponding blank material can only be used to prove the absence of this event below the threshold given on the certificate.

ERM®- BF418c

| DRIED MAIZE POWDER |                                           |                                       |
|--------------------|-------------------------------------------|---------------------------------------|
|                    | Mass Fraction                             |                                       |
|                    | Certified value <sup>1)</sup><br>[g / kg] | Uncertainty <sup>2)</sup><br>[g / kg] |
| 1507 maize         | 9.9                                       | -0.6 ; +0.8                           |

1) The certified value is based on the mass fraction of dried non-genetically modified powder and dried genetically modified powder mixed and corrected for the water content. The certified value is traceable to the SI.

2) The certified uncertainty is the expanded uncertainty estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM) with a coverage factor  $k = 2$ , corresponding to a level of confidence of about 95 %.

Figure 1: Part of the certificate of GM CRM ERM-BF418c.

Recently released GMO CRMs of IRMM have been certified with an asymmetric uncertainty range. If such a CRM is used for bias control (see

ERM Application Note 1), the 'plus uncertainty' has to be used in the case that the average measurement result exceeds the certified value and the 'minus uncertainty' has to be used in the case that the average measurement result is lower than the certified value.

### USING REAL-TIME PCR

Real-time Polymerase Chain Reaction (rt-PCR) is commonly used to quantify GM fractions in food and feed samples. This DNA-based quantification technique measures the ratio between transgenic deoxyribonucleic acid (DNA), i.e. derived from the genetic modification, and endogenous DNA, which is specific for the biological species.

Because of the differing genetic composition of different parts of the seeds of monocotyledons (e.g. maize endosperm, seed coat and embryo), the value of the DNA ratio in the reference material may be not the same as the value of the certified powder mass fraction. Hence, the ratio of extractable transgenic DNA / extracted endogenous DNA is not necessarily equal to the ratio GM maize mass / total maize mass, even if both DNA species have comparable extraction yields.

During the preparation of GMO CRMs, special care was taken to ensure that the GM and non-GMO powders are similar with respect to their particle size distribution. This is particularly important regarding the amount of extractable DNA in both powders. Different DNA extraction efficiencies of the GM and non-GM powder would influence the GM concentration value measured by rt-PCR. Therefore, only extraction methods which were validated to fulfil this requirement should be used.

During certification the GM mass fraction of the CRM is verified using an event-specific rt-PCR method. However, one has to be careful to draw quantitative conclusions from measurements of unknown samples, as the DNA-based GM quantification may vary with the particular variety tested. If not available elsewhere, it is advisable to investigate the impact of different varieties on the rt-PCR results during an in-house validation [1].

Real-time PCR detection methods submitted and validated under the provision of Regulation (EC) No 1829/2003 are accessible for the public via the homepage of the Community Reference Laboratory for GM Food and Feed (<http://gmo-crl.jrc.it/detectionmethods.htm>).

## EXPRESSING RESULTS IN RELATIVE DNA COPY NUMBERS

In Europe the most often used methodology for GMO quantification is rt-PCR, therefore a recent Commission Recommendation (2004/787/EC) proposes to express measurement results on GM samples in DNA copy numbers. If one is using GMO CRMs certified for their GM mass fraction for the calibration of measurements and expresses the final result in relative copy numbers, one should be aware that the maize CRMs have been produced using GMO maize being heterozygous for the transgene. Information about the zygosity of the seed materials used for the production of the CRMs can be found in the corresponding certification report. Furthermore

one has to take into account that the relative GM copy numbers for maize are influenced by the way the GMO hybrid variety was produced and by the endoreduplication status of the seeds, which increases the impact of genomic distribution present in the endosperm tissue. Considering the extreme cases the relative GM copy numbers can either be 33 % (transgenic event originating from the father used to cross the heterozygous seed) or 66 % (transgenic event originating from the mother plant used to cross the heterozygous seed) under the assumption that endoreduplication is so intense that the impact of the endosperm is close to 100 %. All other cases (less impact of endoreduplication and bigger impact of the embryo tissue) will lead to values between 33 and 66 %, based on the assumption that in comparison to these effects the impact of the seed coat can be neglected.

An example for the transformation of a measurement result and its uncertainty obtained in g/kg into relative copy numbers is given below.

### EXAMPLE

By using for calibration CRMs certified for their GM mass fraction, a maize sample was found to contain  $65 \pm 20$  g/kg of maize event 1507. The expanded measurement uncertainty of 20 g/kg was calculated using a coverage factor of 2 and a measurement uncertainty of the quantification method of 15 %, estimated during in-house validation. In order to transform the result obtained for the GM mass fraction into a copy number ratio, the result in g/kg needs to be transformed into percent by dividing by 10. It has to be taken into consideration that the maize GMO CRMs used for calibration have been produced from heterozygous maize seeds, the results need to be divided by 2:

$$\frac{\bar{x}}{10 \times 2} = \frac{65}{20} = 3.3 \quad \text{for } \bar{x} = \text{average of the GM content found in g/kg}$$

Note, that in cases where a different DNA extractability has been observed for the non-GMO and GMO base materials used to produce the CRMs, a correction factor needs to be applied. Information about the DNA extractability can be found in the certification report. Using CTAB a ratio of  $0.7 \pm 0.3$  was found for the DNA extractability of the GMO powder divided by the non-GMO powder. Hence, the true GM content of the sample under investigation is overestimated in terms of copy numbers and needs to be corrected:

$$3.3 \times f = 3.3 \times 0.7 = 2.3 \quad \text{for } f = \text{correction factor related to the different DNA extractability of the GMO and non-GMO powder used as CRM}$$

The effect of endoreduplication and the breeding of the heterozygous maize event need to be considered in the uncertainty of the measurement results. The uncertainty needs to cover the range of 33 % (66 % minus 33%) and the value measured might differ with 16.5 %. For the estimation of the copy number ratio the DNA extracted from the maize sample under investigation needs to be quantified and the number of maize genomes estimated. For this estimation the DNA concentration is divided by the genome size of maize. Consequently, the uncertainty related to the DNA quantification and the uncertainty related to the genome size estimation need to be considered in the uncertainty calculation. According to literature maize genome sizes are known to vary up to 36 % [2]. During in-house validation the reproducibility of the quantification method was established to be 22 %. Consequently, the expanded combined uncertainty for the result expressed in copy number ratios ( $U_{cc}$ ) can be calculated as:

$$U_{cc} = k \sqrt{u_m^2 + u_{gs}^2 + u_{Dq}^2 + u_e^2}$$

$$U_{cc} = 2 \sqrt{15^2 + \left( \frac{18}{\sqrt{3}} \right)^2 + 22^2 + \left( \frac{16.5}{\sqrt{3}} \right)^2} \% = 60\%$$

for  $k$  = coverage factor

$u_m$  = uncertainty contribution related to the copy number quantification method

$u_{gs}$  = uncertainty contribution related to the genome size estimation

$u_{Dq}$  = uncertainty contribution related to the DNA quantification

$u_e$  = uncertainty contribution related to the breeding and endoreduplication

Expressed in copy numbers the maize sample contains  $2.3 \pm 1.4$  transgenic sequences of event 1507 per 100 endogenous sequence. Compared to the result expressed in 1507 mass fractions of  $65 \pm 20$  g/kg the relative expanded uncertainty increased from 30 to 60 %.

[1] IUPAC Technical Report (2002): Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis  
[2] Poggio et al., Annals of Botany 85 (1998), 107-115.

# Application Note 5



November 2007

## Use of Certified Reference Materials for the quantification of GMO in DNA copy number ratio

This application note provides guidance on the correct use of European Reference Materials certified for their GM (genetically modified) copy number fraction of a specific GM event. The details given below refer particularly to the use of the CRMs ERM-BF413d and ERM-AD413 and the upcoming CRMs certified for copy number ratio.

### INTRODUCTION

The JRC-IRMM has recently developed two new types of GMO Certified Reference Materials (CRMs) which permit the correct implementation of the Recommendation (EC) 787/2004 [1] using a metrologically traceable system. This note gives instructions on how the new CRMs should be applied.

### CHARACTERISTICS OF THE NEW GMO CRMs

#### A. New GMO matrix CRMs

The certified values are based on two different measurement units. Besides a certified value for the mass fraction of a specific genetic modification event (see application note 4) the new CRM is certified for the DNA copy number ratio. This parameter, expressed in %, is calculated according to:

$$\text{DNA copy number ratio [\%]} = \frac{\text{GM DNA copy number [cp]}}{\text{Target taxon-specific DNA copy number [cp]}} \times 100$$

The certification is based on QRT-PCR (quantitative real-time PCR) measurements. These measurements are calibrated by using a dedicated plasmid DNA calibrant that is certified to contain one copy of both the GM and the taxon-specific target sequence per plasmid (see part B).

Therefore, the GM maize DNA copy number ratio is directly related to the GM event analysed. Moreover, in the example below, the CRM ERM-BF413d should only be used in conjunction with the plasmid calibrant ERM-AD413 and the event-specific MON 810 detection method [2]. The certified MON 810 DNA copy number ratio (0.57 %) is different from the certified mass fraction (10.0 g/kg or 1.0 %) as the certified MON 810 copy number ratio takes into account the zygosity, ploidy and endoreduplication status of the seeds used to produce this material.

The matrix CRM is intended for the quality control of analytical procedures including the DNA extraction and purification as well as the PCR measurement steps for a particular GM event.

#### B. New GMO plasmid CRMs

The certified calibrants contain a defined DNA fragment specific for a genetic modification as well as a defined DNA fragment specific for the taxon analysed. That plasmid contains a 170 base pair (bp) fragment of the MON 810 5' *plant-P35S* junction and a 351 bp fragment of the maize endogenous high mobility group gene (*hmg*). The certified values are the number of cloned GM and the number of taxon-specific DNA fragment per plasmid respectively. The number ratio between those two DNA fragments is provided as an indicative value obtained by duplex and simplex real-time PCR.

### USE OF THE GMO PLASMID CALIBRANT

The calibrant has to be used in conjunction with a defined QRT-PCR method [1].

Each calibrant is delivered on dry-ice in a closed plastic tube and should be kept at -20 °C until use. The contents should be first thawed, then mixed and finally opened and diluted under a laminar flow to reduce the risk of contamination. Each tube contains approximately  $2 \times 10^6$  copies (cp) of plasmid per  $\mu\text{L}$  and the recommended starting volume for the dilution series is 50  $\mu\text{L}$ . The dilution protocol stated on the certificate should be followed. The dilution buffer is not provided.

The dilution series should always be prepared fresh and any excess discarded in closed tubes. The dilution series is used to prepare two calibration curves (CCs) (one CC for the transgene and one CC for the taxon-specific gene) each having 5 points, each point measured in triplicate in the PCR reaction (see example). One tube provides enough calibrant to prepare 10 CCs for both targets which means that a total number of 100 to 250 samples can be quantified with one tube. The recommended sample intake for QRT-PCR is 5  $\mu\text{L}$  of template DNA per PCR well.

Measured fluorescence threshold values ( $\text{Ct}$  values) must be plotted against the theoretical number of copies of both fragments to generate two CCs. These CCs are used for the

quantification of the GM target relative to the taxon-specific target in an unknown sample. The results can then be calculated as the ratio of both targets and expressed in percentage according to the Recommendation (EC) 787/2004. An internal quality control (QC) PCR can be made by calculating the average ratio of measured Ct

values for the taxon-specific and transgenic targets for the calibration points corresponding to 2000 cp/µL. That ratio should be in agreement with 1.04 % (expanded uncertainty 0.06 %) for a simplex PCR as indicated in the certification report (see also ERM Application Note 1).

## EXAMPLE

Genomic DNA extracted from an unknown sample and from ERM-BF413d used as QC material are analysed by QRT-PCR using ERM-AD413 as calibrant. Ct values are obtained for the ERM-AD413 calibrant after amplification of the *hmg* and MON 810 fragments (**Table 1**). Average Ct values for the unknown sample, 32.76 and 25.44 are obtained for the amplification of MON 810 and *hmg* fragments, respectively. For the QC material, average Ct values of 31.22 and 22.20 are obtained for the MON 810 and *hmg* fragments, respectively.

The slopes and Y-intercepts of the two calibration curves must be determined to calculate the MON 810 content in both samples assuming a straight line as the best-fit model function. The built-in modules of Microsoft®Excel or any other available calibration/determination software can be used to calculate the slopes and Y-intercepts.

The slopes (*b*) of both linear regression lines can be calculated using the formula:  $b = \frac{\sum(\log(x) - \bar{\log}(x))(y - \bar{y})}{\sum(\log(x) - \bar{\log}(x))^2}$  where, *x*

represents the number of copies of the fragment amplified and *y* represents the corresponding Ct value. The slopes of the calibration curves of the *hmg* and the MON 810 fragments given in **Table 1** are respectively -3.25 and -3.32. The Y-intercepts (*a*) of the regression lines are calculated using the formula:  $a = \bar{y} - b\bar{x}$  when  $\log(x) = 0$ . In our example, the *a*-values for the *hmg* and MON 810 regression lines are 39.26 and 40.93, respectively. Those values represent the theoretical Ct values corresponding to 1 cp of both fragments. The slope serves to calculate the PCR efficiency ( $\varepsilon$ ) with the formula:  $\varepsilon = (10^{-1/b} - 1) * 100$ . In our example, the PCR efficiencies were equal to 99.7 % and 103.1 % for the amplification of the MON 810 and *hmg* fragments, respectively. The number of MON 810 copies (cp) present in the

unknown sample is calculated as:  $cp_{MON810} = 10^{\left(\frac{Ct_{MON810} - a_{MON810}}{b_{MON810}}\right)}$ , where  $Ct_{MON810}$ ,  $a_{MON810}$  and  $b_{MON810}$  are the Ct values, the Y-intercept and the slope obtained for MON 810 amplification. The same calculation is done to determine the

number of copies of the *hmg* fragment with the formula:  $cp_{hmg} = 10^{\left(\frac{Ct_{hmg} - a_{hmg}}{b_{hmg}}\right)}$ . In our example, the estimated average copy numbers of MON810 and *hmg* fragments present in the unknown sample is 289 and 17878 cp, respectively. The MON 810 content of the unknown sample expressed in percentage is therefore equal to:  $\frac{289}{17878} * 100 = 1.62\%$ .

same calculation is made for the QC material containing:  $\frac{841}{177513} * 100 = 0.47\%$  of MON 810. Taking into account the

uncertainty associated with the ERM-BF413d and the uncertainty of the measurement (see ERM Application Note 1), it can be verified if the measured value agrees with the certified values of ERM-BF413d. In the example given above the ratio of the average Ct values of 1.05 obtained for 10000 cp (5 µL of ERM-AD413 at 2000 cp/µL) is in agreement with the indicative value of  $1.04 \pm 0.06$  reported on the ERM-AD413 certificate, meaning that this GM quantification was under control.

[1] European Commission Recommendation (EC) N° 787/2004 of 4.10.2004 on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) No 1830/2003. Off. J. Eur. Union L 348 (2004) 18-26

[2] ISO 21570:2005 Foodstuffs - Methods of analysis for the detection of genetically modified organisms and derived products - Quantitative nucleic based methods. Annex D2 Event-specific method for the relative quantitation of maize line MON 810 DNA using real-time PCR. 93-99.

<sup>1</sup> Cross-contamination or unspecific amplification should be suspected if the Ct values for the NTC differs from the number of PCR cycles performed.

# Application Note 6



## Use of ERM certificates and materials

This application note describes some practical aspects associated with handling and use of certified reference materials (CRMs) in laboratories. The various values provided on a certificate, re-use of materials, applying a moisture correction and interpretation of the traceability statement are also explained.

### INTRODUCTION

Understanding the information contained in reference material certificates and correct use of these materials are necessary to get the maximum benefit from them. This application note explains the basic terms used on ERM certificates, and gives guidance on the practical handling of materials.

### TERMS ON THE CERTIFICATE

#### *Types of assigned values*

Three categories of values are assigned for ERM-branded reference materials:

Certified values fulfil the highest standards for reliability. They are traceable to stated references and are accompanied by a GUM (ISO Guide 98 "Guide to the expression of uncertainty in measurement") compatible expanded uncertainty statement valid for the entire shelf life of the ERM-CRM.

Indicative values are not certified due to either a larger uncertainty than required for the intended use or insufficient variety of methods used in the characterisation. The information is therefore unsuitable for certification at the accuracy required for certified values.

Additional material information are values created during the certification exercise, which are usually the result of one method only and indicate the order of magnitude rather than an accurate value.

In summary, certified values are those values the certifying body is confident in assigning with the highest accuracy, while indicative values display higher uncertainties and/or lack a full traceability statement. This hierarchy in reliability is shown by the fact that only certified values are on the first page of the certificate. It follows that certified values are more assured than indicative values which in turn are more assured than additional material information.

#### *Metrological traceability statement*

Certified and indicative values come with a traceability statement. These statements unambiguously identify the measurand as well as the traceability of the values assigned to this measurand (see also the ERM policy on traceability on [www.erm-crm.org](http://www.erm-crm.org)). This information is given in one or two footnotes on the certified or

December 2008

**Author:** Thomas Linsinger

European Commission - Joint Research Centre  
Institute for Reference Materials and

Measurements (IRMM)

Retieseweg 111, 2440 Geel, Belgium

Email: [thomas.linsinger@ec.europa.eu](mailto:thomas.linsinger@ec.europa.eu)

[www.erm-crm.org](http://www.erm-crm.org)

indicative values and measurands (see Figures 1 and 2). The following alternatives exist:

Measurands can be structurally defined ("rational") like for total cadmium or ochratoxin A, or procedurally defined (empirical"), such as for dietary fibre, extractable cadmium or impact toughness, which are defined via specific measurement protocols.

For structurally defined measurands, ERM principles are stricter than those of ISO Guide 34 and 35 and require availability of results obtained from at least two completely independent methods or confirmation of results by primary methods of measurement by an independent method to demonstrate the absence of any method bias of assigned values.

Values assigned to the measurands can be traceable to the International System of Units (SI) or to an artefact (empirical scales). In the former case, all input factors are calibrated with standards whose values are traceable to the SI, whereas in the latter cases arbitrary standards have been used for at least one step in the calibration (e.g. World Health Organisation primary reference preparation in clinical chemistry, Vienna Standard Mean Ocean Water (VSMOW) for chemical shift).

| ERM®- AD452/IFCC                                                                                                                                                                                                                                                                                                                                                      |                               |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|
| GAMMA-GLUTAMYLTRANSFERASE                                                                                                                                                                                                                                                                                                                                             |                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                       | Certified value <sup>1</sup>  | Uncertainty <sup>2</sup>    |
| Catalytic concentration in reconstituted material                                                                                                                                                                                                                                                                                                                     | 114.1 U/L<br>1.90 $\mu$ kat/L | 2.4 U/L<br>0.04 $\mu$ kat/L |
| <small>1) This value is the unweighted mean of 12 sets of results, independently obtained from 12 laboratories. It is traceable to the IFCC primary reference method at 37 °C. The material must be reconstituted according to the specified procedure (see below). Values were converted from U/L into <math>\mu</math>kat/L by multiplication with 0.01667.</small> |                               |                             |

Figure 1: Traceability statement of ERM-AD452/IFCC. The measurand is procedurally defined and proper calibration of all input factors is assumed.

In earlier ERM certificates, this information was combined into one footnote (Figure 1). Since the adoption of the common ERM policy on traceability, this information is given in two footnotes, one connected to identity of the measurand itself, the other specifying the traceability of the values assigned to it.

### Minimum sample intake

Every material is intrinsically heterogeneous. The minimum amount of material that is representative of the whole unit (bottle, vial etc.) is defined as minimum sample intake (Figure 2). The certified value and its uncertainty cannot be guaranteed for subsamples smaller than the minimum sample intake.

### Expiry date

Producers of reference materials guarantee the integrity of the material and the validity of the certificate for a specified time (known as the shelf life), provided the material is unopened and stored under the recommended storage conditions. This does not automatically mean that the user has to discard the unused sample once the shelf life has expired, but the producer cannot guarantee stability any longer. Users can continue to use a material under their own responsibility, if they have additional evidence of stability (e.g. no changes in quality control charts, comparison with other materials), however the material certificate will not be valid.

| ERM® - BC367              |                              |             |
|---------------------------|------------------------------|-------------|
| RAPESEED (COLZA)          |                              |             |
| Parameter                 | Certified value <sup>1</sup> | Uncertainty |
| Total glucosinolate (GSL) | 99 mmol/kg                   | 9 mmol/kg   |
| Sulphur                   | 10.3 g/kg                    | 0.5 g/kg    |

1) The certified values for both GSL and S are the unweighted mean of the means of the accepted sets GSL and S. The values are traceable to SI.

2) Estimated expanded uncertainty  $U$  with a coverage factor  $k = 2$ , corresponding to a level of confidence  $c$  as defined in the Guide to the Expression of Uncertainty in Measurement (GUM), ISO, 1995. Uncertainty arising from characterisation as well as from homogeneity and stability assessment were taken into consideration.

This certificate is valid for one year after purchase

Sales date:

The minimum sample intake is:

- 500 mg for total glucosinolate (GSL) determination.
- 20 g for sulphur calibration by XRF (preparation of discs).
- 200 mg for sulphur determination after digestion.

Figure 2: The shelf life and minimum sample intake are marked in blue and green, respectively.

The shelf life may be extended by the producer if additional information on the stability becomes available. This, however, refers only to newly purchased samples and not to samples distributed before the extension of the original shelf life.

### Instructions for use

The instructions for use give a detailed description for each material. These descriptions can refer to dry mass correction (Figure 3), reconstitution procedure, use of values, storage of the material etc. If these instructions are not followed, the assigned values are not valid.

#### INSTRUCTIONS FOR USE

The sample can be used as it is from the bottle. Before a bottle is opened, it should be shaken manually for 5 min so that the material is re-homogenised. The correction to dry mass should be made on a separate portion of 100 mg which should be dried in an oven at 102 °C for 3-4 h until constant mass is attained. The recommended minimum sample intake is 500 mg.

Figure 3: Definition of the dry mass correction for ERM-CE477. Please note the different recommended sample intakes for dry mass correction and certified measurands (in this case butyltins), reflecting different degrees of homogeneity for moisture and butyltins.

### HANDLING ISSUES

#### Measurement method to be used

The measurement method must determine the same measurand as described in the certificate. This means that for procedurally defined measurands, the method specified on the certificate must be used. For structurally defined measurands, any method determining this measurand can be used and should give unbiased results.

All instruments must be properly calibrated to ensure that measurement results are traceable to the same reference as the certified value. For results traceable to an artefact, a standard whose value is traceable to the same artefact must be used.

#### Use of opened bottles

For opened units, alteration or even degradation of the material can happen which could not be accounted for during the certification process. Therefore, CRM producers cannot guarantee the assigned values of opened units. It is up to the user's judgement whether or not this material can be further used and which storage conditions or treatment are necessary. As a general guideline, materials should be stored cool, dry, in the dark and closed. Further information is often available in the certification report, which is freely available on [www.erm-crm.org](http://www.erm-crm.org). In any case, materials from opened containers should be used as soon as possible after opening to minimise change.

#### Moisture correction

Many certified values are stated as content per dry mass of sample. As results from different methods (e.g. drying oven, Karl Fischer titration, vacuum drying oven) may differ significantly, the procedure for moisture correction must be clearly stated on the certificate (Figure 3) and this method must be

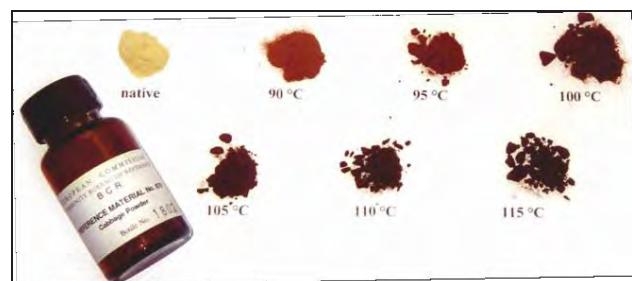
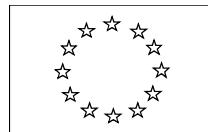
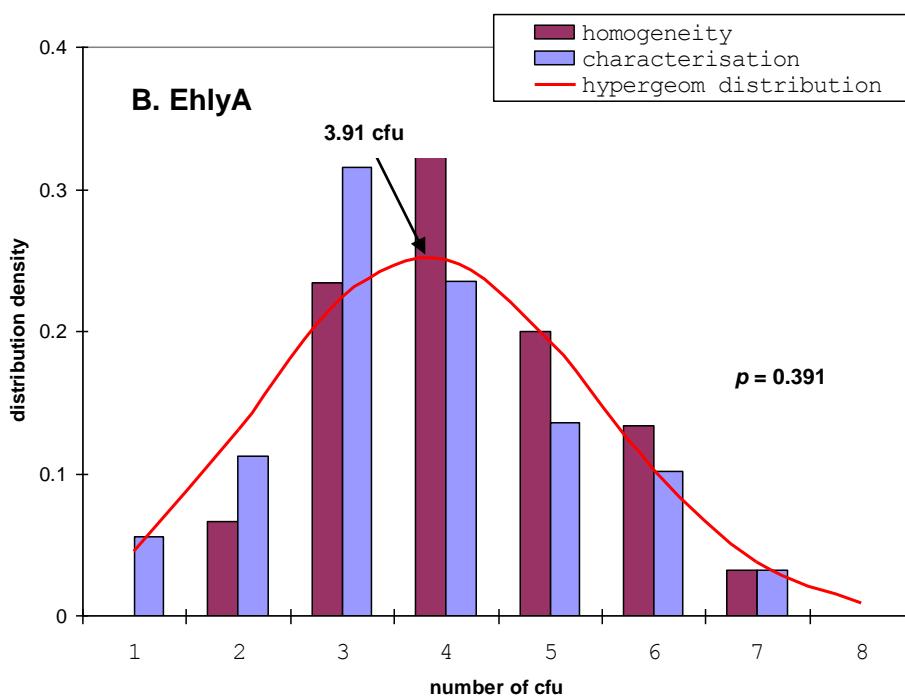
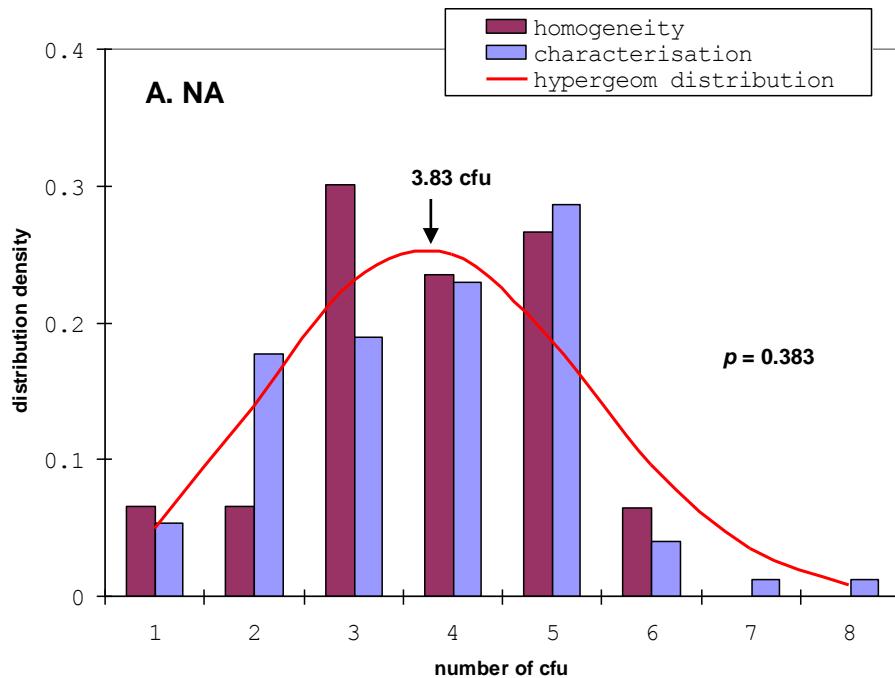



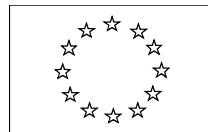

Figure 4: Effect of different drying conditions on a cabbage reference material. Specified drying condition on the certificate: 16 h at 70 °C

used. Using different conditions can significantly alter the material (Figure 4) and the results obtained. Determination of the dry mass must be performed on a separate subsample.





## APPLICATION NOTE IRMM-351

### 1. Presence / absence test


For application in presence/absence tests, analyse at least two vials of the CRM. Plate and incubate material spheres as explained on the certificate under instructions for use. Count colony forming units (cfu) per plate and evaluate results based on individual cfu values per analysed vial. The test has been passed if, for each material sphere, the result is within the 95% confidence interval specified for the CRM ( $4 \pm 2$ ). The test failed if the obtained cfu values are not within these limits.

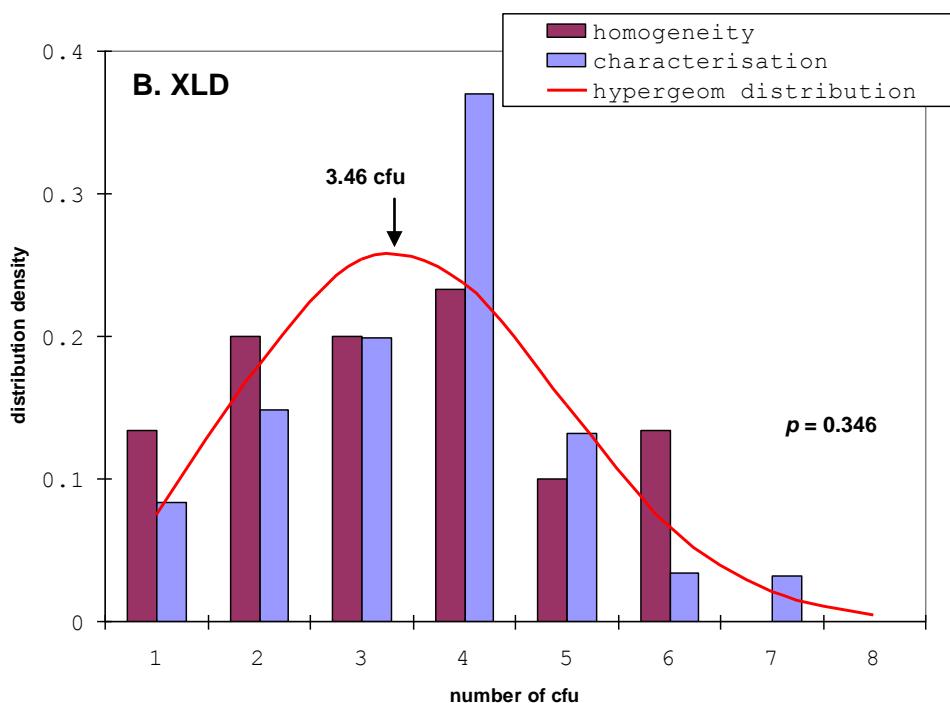
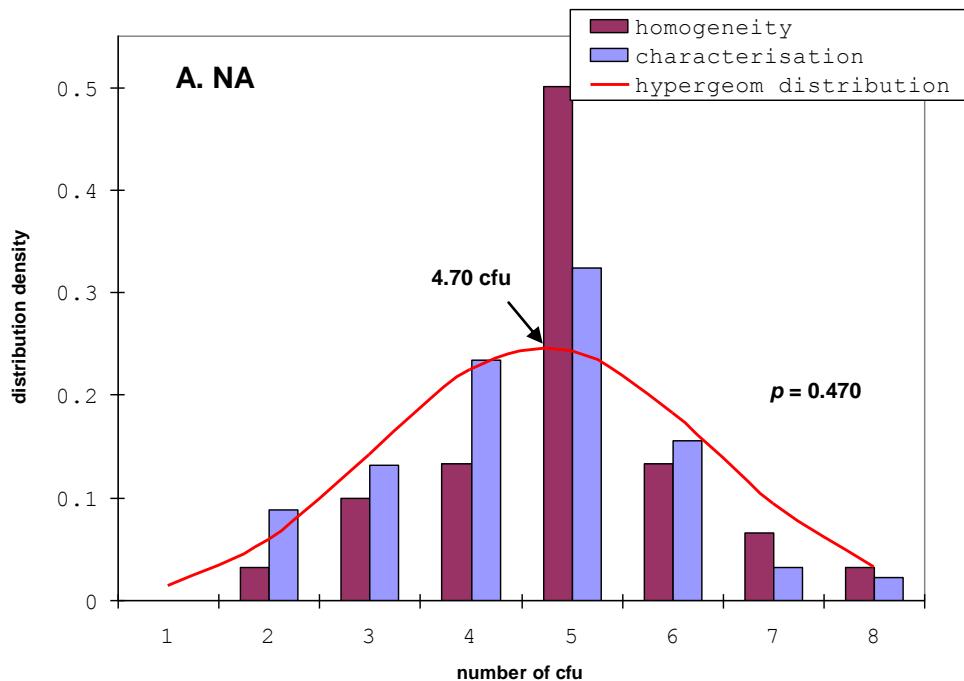
### 2. Method validation

If this CRM is used for method validation or testing of media, a similar approach as for certification of the batch should be applied. This requires the measurement of an appropriate number of CRM vials, minimum 15 in agreement with the number of CRM vials analysed during the characterisation study (section 5.2 of the certification report). Conclusions should be based upon patterns (histograms) of the results obtained in the laboratory and during certification rather than on mean cfu values. The histogram obtained in the laboratory is compared with the hypergeometric distribution obtained for the homogeneity and batch characterisation data (fig.1) and a chi square value is calculated. The success of the validation is assessed from this chi square value with respect to critical limits. If the lab falls short of the critical value, it failed in method validation. A detailed explanation on the statistics can be found in the certification report.



**Fig. 1: Representation of observed (histograms) and expected (hypergeometric distribution) cfu values obtained for homogeneity and batch characterisation by colony counting on NA and EhlyA. Mean cfu values are indicated by arrows.**





## APPLICATION NOTE IRMM-352

### 1. Presence / absence test

For application in presence/absence tests, analyse at least two vials of the CRM. Plate and incubate material spheres as explained on the certificate under instructions for use. Count colony forming units (cfu) per plate and evaluate results based on individual cfu values per analysed vial. The test has been passed if, for each material sphere, the result is within the 95% confidence interval specified for the CRM ( $5 \pm 2$  on nutrient agar and  $4 \pm 2$  on XLD agar). The test failed if the obtained cfu values are not within these limits.

### 2. Method validation

If this CRM is used for method validation or testing of media, a similar approach as for certification of the batch should be applied. This requires the measurement of an appropriate number of CRM vials, minimum 15 in agreement with the number of CRM vials analysed during the characterisation study (section 5.2 of the certification report). Conclusions should be based upon patterns (histograms) of the results obtained in the laboratory and during certification rather than on mean cfu values. The histogram obtained in the laboratory is compared with the hypergeometric distribution obtained for the homogeneity and batch characterisation data (fig.1) and a chi square value is calculated. The success of the validation is assessed from this chi square value with respect to critical limits. If the lab falls short of the critical value, it failed in method validation. A detailed explanation on the statistics can be found in the certification report.



**Fig. 1: Representation of observed (histograms) and expected (hypergeometric distribution) cfu values obtained for homogeneity and batch characterisation by colony counting on NA and XLD. Mean cfu values are indicated by arrows.**

# Application Note



## ERM<sup>®</sup>-AD623

**Author:** Liesbet Deprez  
European Commission – Joint Research Centre  
Institute for Reference Materials and  
Measurements (IRMM)  
Retieseweg 111, 2440 Geel, Belgium  
Email: [jrc-irmm-info@ec.europa.eu](mailto:jrc-irmm-info@ec.europa.eu)

### Use of ERM-AD623 for the Quantification of *BCR-ABL1* transcripts

The certified reference material (CRM) ERM-AD623 [1] is intended to be used for the calibration of quantitative real time polymerase chain reaction (qPCR) assays measuring the *BCR-ABL1* b3a2 transcript levels in cDNA samples from leukaemia patients.

#### INTRODUCTION

The fusion gene *BCR-ABL1* results from a genetic translocation joining two genes (c-abl oncogene 1 [*ABL1*] and breakpoint cluster gene [*BCR*]) and is the primary cause of chronic myeloid leukaemia (CML). Breakpoints can occur at different positions within the genes and the two major transcripts are called b2a2 and b3a2 (joining exon 13 and exon 14 of *BCR* respectively with exon 2 of *ABL1*).

*BCR-ABL* encodes a constitutively active tyrosine kinase which is targeted by the standard therapy for CML with tyrosine kinase inhibitors. Regular monitoring of *BCR-ABL1* transcript levels in the peripheral blood from patients is essential to evaluate treatment efficacy [2]. A multistep measurement procedure consisting of RNA extraction, reverse transcription and qPCR, as shown in Figure 1, is used to quantify *BCR-ABL* transcript levels in blood samples.

#### INTENDED USE OF ERM-AD623

ERM-AD623 is intended for the calibration of qPCR assays quantifying the *BCR-ABL1* b3a2 transcript in relation to the transcript of 1 of 3 control genes (CG): *ABL1*, *BCR*, or glucuronidase beta (*GUSB*). Several qPCR assays with different probe/primer sets or PCR instruments can be used (as listed in Annex H of the certification report [1]). The suitability of ERM-AD623 for the quantification of the *BCR-ABL1* b2a2 transcript would have to be verified by the laboratory.

ERM-AD623 can be used directly in the routine analysis of cDNA samples or indirectly for calibrating in-house plasmid standards.

#### Limitations

ERM-AD623 cannot be used to control the earlier steps of the measurement procedure, i.e. RNA extraction and reverse transcription.

Conversion of the measured copy number ratio *BCR-ABL1* transcripts/CG transcripts to the international scale (IS) requires the use of established conversion factors processes or an additional matrix reference material with a certified value traceable to the World Health Organization (WHO) International Genetic Reference Panel for the Quantification of *BCR-ABL* translocation [3, 4].

#### PRACTICAL USE OF ERM-AD623

##### Design of calibration curves

Two calibration curves, one for the *BCR-ABL* fragment and one for the CG fragment, should be included in each qPCR experiment to compensate for between-day variations or variability due to other sources like different reagent batches and different instruments. It is recommended that each of the six ERM-AD623 plasmid solutions is measured in triplicate.

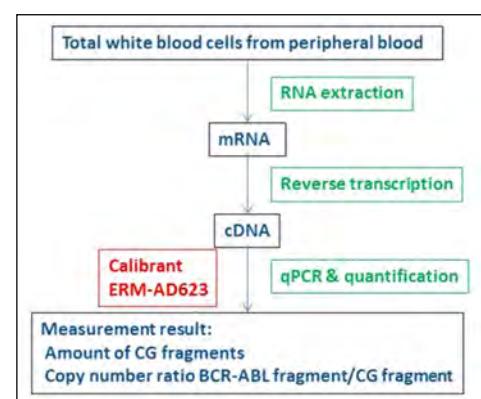



Figure 1: Multistep measurement procedure to quantify *BCR-ABL* transcripts levels in blood samples. CG: control gene, qPCR: quantitative real time PCR

The calibration curves are obtained by plotting the quantification cycle ( $C_q$ ) value (also called  $C_t$  value) measured for each ERM-AD623 plasmid solution against the  $\log_{10}$  of the amount of fragment copies added to the qPCR reaction (Figure 2).

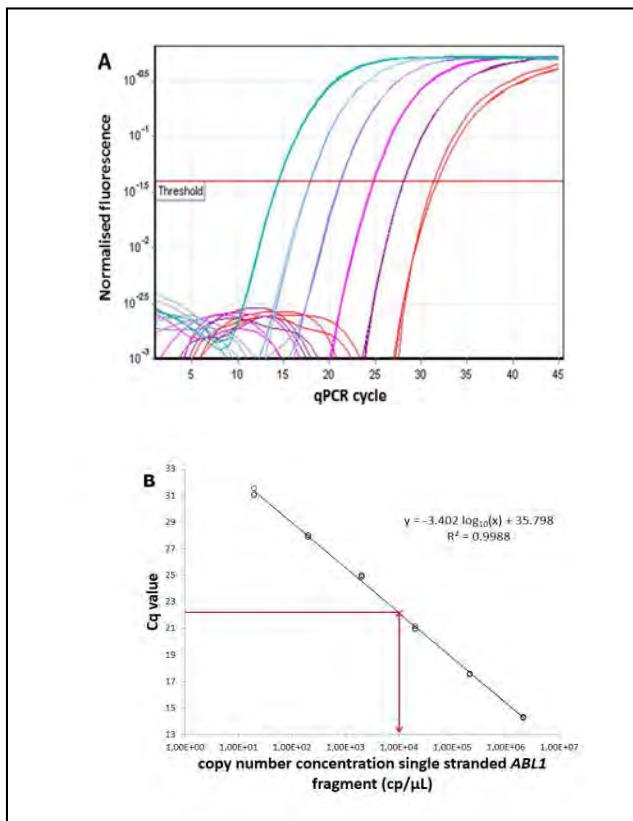



Figure 2: Example of an amplification plot and a calibration curve for the *ABL1* target obtained with the six ERM-AD623 plasmid solutions.

The certified copy number concentrations of the ERM-AD623 plasmid solutions refer to copy numbers of the double stranded plasmid and these values must be multiplied by 2 when measuring single stranded cDNA samples.

In addition, the difference in slope between the calibration curve from the *BCR-ABL1* fragment and the calibration curve from the CG fragment should be taken in account when evaluating the quality of a qPCR experiment. Small slope differences may have a large effect on the calculated copy number ratio *BCR-ABL1* transcript/CG transcript due to the logarithmic scale of the calibration curves.

## Calculating results for unknown samples

### Number of *BCR-ABL1* and CG transcripts

The number of *BCR-ABL1* and CG transcripts in an unknown sample are calculated from the measured  $C_q$  values by using the equation of the calibration curves. The number of CG transcripts in a cDNA sample gives an indication of the quality of the RNA extraction and the reverse transcription step. In case of undetectable *BCR-ABL1* transcript levels, the number of CG transcripts can be used to determine the level of molecular response as described in the European LeukemiaNet recommendations [2].

### Copy number ratio

The copy number ratio *BCR-ABL1* fragment/CG fragment is calculated as:

$$\frac{\text{number of } BCR-ABL1 \text{ transcripts}}{\text{number of CG transcripts}} \cdot 100 \%$$

### Uncertainties

The uncertainty associated with the certified copy number concentrations of the ERM-AD623 plasmid solutions must be taken into account when reporting the number of CG transcripts in a cDNA sample.

As the sequences of the *BCR-ABL* and the CG transcript are on one plasmid, the contribution of ERM-AD623 to the uncertainty associated with the measured copy number ratio *BCR-ABL* transcript/CG transcript is negligible.

### qPCR assay validation and trend evaluation

The validation process of in-house developed qPCR assays should confirm that the PCR efficiencies obtained with ERM-AD623 are equal to those of the cDNA samples [6]. In addition, assays should be optimised to yield similar intercept values for the calibration curves of the *BCR-ABL* and the CG fragment [5].

Run-to-run variability and trends in results over time can be evaluated as the  $C_q$  values obtained for each ERM-AD623 plasmid solution should remain stable providing the same threshold for the fluorescence signal is used.

## HANDLING OF THE MATERIAL

The six ERM-AD623 plasmid solutions should be stored at -20 °C until use. To prepare the solutions for use, the content of the vials should be thawed completely and mixed gently by inverting the vials several times. Once thawed, the solutions can be stored for a maximum of 4 weeks at 4 °C or placed back at -20 °C. However, the solutions should not pass more than 10 freeze/thaw cycles.

The certified values of the plasmid solutions and their associated uncertainty are only valid when the minimum sample intake specified on the certificate of 5 µL is respected. ERM-AD623 cannot be used for a reliable quantification of the

BCR-ABL transcript with lower sample intakes as no certified values are available.

Recommendations on the quality criteria for qPCR measurements have been published [5] and are summarized in Table 1.

## REFERENCES

- [1] Deprez *et al.* 2012. ISBN 978-92-79-23343
- [2] Baccarani *et al.* 2013. Blood 122; 872-884
- [3] Brandford *et al.* 2008. Blood 122; 3330-3338
- [4] White *et al.* 2010. Blood 116; e111-e117
- [5] Foroni *et al.* 2011. British Journal of Haematology 153; 179-190
- [6] Branford *et al.* 2006. Leukemia 20; 1925-1930

Table 1: Recommended quality criteria for qPCR measurement results [5]

| Type of sample                    | Criteria                                                                             | Acceptable values/results                                                                                            |
|-----------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| All (calibrants and cDNA samples) | Variability of Cq values within replicates = highest value - lowest value            | < 0.5 if average Cq value ≤ 30<br>< 1.0 if average Cq value > 30 and ≤ 33<br>< 1.5 if average Cq value > 33 and < 37 |
| Calibrants                        | Slope of the calibration curve                                                       | Between -3.20 and -3.60                                                                                              |
| Calibrants                        | Coefficient of determination of linear regression ( $R^2$ ) of the calibration curve | > 0.980                                                                                                              |
| cDNA samples                      | Amount of CG transcripts per qPCR reaction                                           | ≥ 10 000 <i>ABL1</i> fragments or<br>≥ 24 000 <i>GUSB</i> fragments                                                  |