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Abstract. The catalytic asymmetric hydrogenation of racemic 
α-substituted aldehydes or ketones via dynamic kinetic resolution 
(DKR) affords a highly efficient method for the preparation of chiral 
alcohols with one or more stereogenic centers. This review presents and 
discusses recent advances and applications of this approach.
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1. Introduction
The catalytic asymmetric hydrogenation of α-substituted ketones 
via dynamic kinetic resolution (DKR) is a highly efficient method 
for obtaining optically active alcohols with two or more contiguous 
stereogenic centers in a single operation.1 This method was first disclosed 
in 1996 by Noyori and co-workers, who reported the hydrogenation of 
racemic α-isopropyl   cyclohexanone with chiral RuCl2[diphosphine]-
[diamine] complexes as catalysts.2 Soon thereafter, Matsumoto et 
al. applied this approach to the synthesis of the tricyclic b-lactam 
antibiotic sanfetrinem, highlighting the synthetic utility of the reaction.3 
Nevertheless, the application of the reaction in organic synthesis 
remained limited because only conformationally rigid substrates such 
as α-substituted cycloalkanones could provide the corresponding 
chiral alcohols with high enantioselectivity and diastereoselectivity.1b 
The challenge has been to find catalysts that selectively catalyze the 

hydrogenation of only one of the two enantiomers of the substrate, 
which can rapidly racemize via the corresponding enolate ion under the 
reaction conditions (Scheme 1).

We have explored the application of chiral spiro ruthenium complexes 
as catalysts for the asymmetric hydrogenation of racemic α-substituted 
aldehydes and ketones via DKR for the purpose of synthesizing 
optically active chiral alcohols. We found that RuCl2[SDPs]- 
[diamine] complexes (Figure 1)4 efficiently catalyze the reaction of 
both conformationally rigid and flexible substrates. This work led 
to the development of several new methods for the preparation of 
optically active primary alcohols with one stereocenter5 and secondary 
alcohols with two or three contiguous stereocenters.6 These methods 
not only provide a practical and environmentally benign route to chiral 
alcohols, but they also facilitate the enantioselective synthesis of chiral 
pharmaceuticals and biologically active natural products. This review 
focuses on recent progress in the enantioselective synthesis of diverse 
chiral alcohols and their applications in the enantioselective synthesis 
of chiral pharmaceuticals and natural products.

2. Asymmetric Hydrogenation via DKR
2.1. α-Substituted Aldehydes to Chiral Primary Alcohols
Although the catalytic asymmetric hydrogenation of prochiral ketones 
is a powerful method for the synthesis of chiral secondary alcohols, 
the asymmetric hydrogenation of racemic α-substituted aldehydes to 
form chiral primary alcohols had remained a challenge until recently. 
This has been the case mainly because no new stereogenic center is 
generated in the hydrogenation of α-substituted aldehydes, which 
makes enantiocontrol of the reaction extremely difficult. In this respect, 
the ideal synthesis of chiral primary alcohols would involve asymmetric 
hydrogenation of racemic α-substituted aldehydes via DKR. In 2007, we 
reported the first examples of such a reaction catalyzed by chiral spiro 
ruthenium catalysts.7 For example, in the presence of RuCl2[(Sa)-DMM-
SDP][(R,R)-DACH] (2a, 0.1 mol %) and a base (KOt-Bu, 20 mol %) 
under 50 atm of hydrogen, various racemic α-aryl aldehydes were 
hydrogenated to chiral primary alcohols with 100% conversion and 78-
96% enantiomeric excess (ee) (eq 1).7 Substrates with a bulky α-alkyl 
group in addition to the α-aryl group gave higher enantioselectivities. 
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However, the location and the electronic nature of the substituent on the 
aromatic ring of the substrate has little impact on the enantioselectivity.

With the same catalyst, 2a, racemic α-aryloxy aldehydes could 
also be hydrogenated to the corresponding chiral b-aryloxy primary 
alcohols with moderate-to-good enantioselectivities (eq 2).8 As was the 
case for α-aryl aldehydes, α-aryloxy aldehydes with a bulky α-alkyl 
group, such as isopropyl, resulted in higher enantioselectivities.

List9 and Lin10 have achieved highly efficient and enantioselective 
hydrogenations of racemic α-aryl aldehydes to chiral primary alcohols 
via DKR by employing Noyori BINAP catalysts RuCl2[(Sa)-Xyl-
BINAP][(S,S)-DACH] and RuCl2[(Ra)-Xyl-BINAP][(R,R)-siloxy-
DACH]. The chiral primary alcohols produced by this reaction are highly 
useful for organic synthesis. For example, (S)-2-(4-methoxyphenyl)-
3-methylbutan-1-ol is a key intermediate in the preparation of 
(1S,4S)-cis-7-methoxycalamenene,11 and (S)-2-(4-chlorophenyl)-3-
methylbutan-1-ol can be easily converted into (S)-2-(4-chlorophenyl)-
3-methylbutanoic acid, which is a building block for the pyrethroid 
pesticide (S,S)-fenvalerate.12 We have used this reaction to synthesize 
BAY X 1005, a leukotriene receptor antagonist and a potent inhibitor 
of lipoxygenase activating protein,13 in only a few steps (Scheme 2).7 

2.2. Alkyl Ketones with an α-Aryl Substituent to Chiral 
Secondary Alcohols with Two Stereogenic Centers
The catalytic asymmetric hydrogenation via DKR of racemic alkyl 
ketones possessing an α-aryl substituent is an efficient method for the 
synthesis of chiral secondary alcohols with two adjacent stereogenic 
centers. Because cycloalkanones are more conformationally rigid 
than acyclic alkanones, the asymmetric hydrogenation of racemic 
α-aryl cycloalkanones via DKR has received more attention than 
similar reactions of acyclic ketones. For example, in 2003, Scalone 
and Waldmeier reported an efficient asymmetric hydrogenation of 
dibenzylpiperidin-3-one catalyzed by RuCl2 [(Sa)-3,5-iPr-MeOBIPHEP]- 
[(R,R)-DPEN]. The reaction afforded chiral cis-1,4-dibenzylpiperidin-
3-ol with 96% ee and 99% cis-selectivity. These investigators applied 
this method to the synthesis of Ro 67-8867, an NMDA 2B receptor 
antagonist that has potential for the treatment of acute ischemic 
stroke.14 In 2004, Noyori and co-workers reported the hydrogenation 
of racemic α-arylcycloalkanones catalyzed by RuCl2[(Sa)-Tol-BINAP]-
[(S,S)-DPEN] to give chiral cis-b-arylcycloalkanols with excellent 
enantioselectivities (up to 99.7% ee) and cis:trans selectivities (≥98:2).15

Scheme 1. Asymmetric Hydrogenation of Racemic Ketones and Aldehydes 
via DKR.

Figure 1. Chiral Spiro Ruthenium Complexes Employed as Effective Catalysts 
of the Asymmetric Hydrogenation of Racemic α-Substituted Aldehydes and 
Ketones via DKR. (Ref. 4–6)
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We have also studied the asymmetric hydrogenation of racemic 
α-arylcyclohexanones for the purpose of developing new strategies 
for the asymmetric total synthesis of chiral natural products. We found 
that RuCl2[(Sa)-Xyl-SDP][(R,R)-DPEN] (1d) efficiently catalyzed the 
asymmetric hydrogenation of racemic α-arylcyclohexanones, yielding 
cis-b-arylcyclohexanols in 89-99.9% ee and cis:trans selectivities of 
>99:1 (eq 3).16 An electron-donating or withdrawing group at the meta 
or para position of the benzene ring of the substrate has little influence 
on the enantioselectivity, but a substrate with an ortho substituent 
gave lower enantioselectivity. This catalyst could also be used for 
cycloalkanones possessing a five- or seven-membered ring, although 
the resulting enantioselectivities were lower.

These results encouraged us to study the asymmetric hydrogenation 
of racemic α-arylcyclohexanones with a bulky ethylene ketal group 
attached to the cyclohexanone ring. The ketal-functionalized chiral 
b-arylcyclohexanols that would result are potential chiral building 
blocks for the synthesis of bioactive natural products and chiral drugs. 
The hydrogenation proceeded well in the presence of RuCl2[(Sa)-
SDP][(R,R)-DPEN] (1c) as catalyst, and led to the corresponding 
chiral cis-b-arylcyclohexanols in excellent yields and up to 99.3% ee 
(Scheme 3, Part (a)).17 One exception was the cyclohexanone with a 
2,6-dimethoxyphenyl substituent at C2, which gave only 5% conversion. 
In contrast, substrates with the ketal group at the 5 position gave nearly 
quantitative yields of 3-isopropoxy-2-cyclohexenones instead of the 
desired products. However, after careful optimization of the reaction 
conditions, we found that these base-sensitive α-arylcyclohexanones 
could be catalytically hydrogenated with RuCl2[(Sa)-Xyl-SDP][(R,R)-
DPEN] (1d) (in a 1:1 (v/v) mixture of isopropanol and toluene under 
100 atm of H2) to afford chiral cis-b-arylcyclohexanols in good-to-
excellent yields (68-98%), high enantioselectivities (up to 99% ee), 
and very high cis:trans selectivities (>99:1) (Scheme 3, Part (b)).18

The asymmetric hydrogenation of racemic α-arylcyclohexanones 
via DKR is a highly efficient method for the construction of chiral, 
aryl-substituted cyclohexane motifs, and has been applied to 
the asymmetric total syntheses of various natural products and 
pharmaceuticals (Scheme 4). For example, the cannabinoids (-)-Δ8-
THC and (-)-Δ9-THC, isolated from Cannabis sativa L.,19 share a 
chiral hexahydro-6,6-dimethyl-6H-benzo[c]chromene motif, which can 
be constructed by the catalytic asymmetric hydrogenation of racemic 
7-aryl-1,4-dioxaspiro[4.5]decan-8-one and subsequent intramolecular 
SNAr cyclization. We have synthesized these two aromatic terpenoids 
in 35% and 30% overall yields in 13 and 14 steps, respectively, from 
commercially available starting materials.20 Similarly, (–)-CP-55940, 
a potent nonselective cannabinoid (CB) receptor agonist for human 
recombinant CB1 and CB2 receptors,21 has been synthesized in 14% 
yield over 14 steps.17 Furthermore, by employing the product of the 
hydrogenation of racemic 8-aryl-1,4-dioxaspiro[4.5]decan-7-one 
as a key chiral intermediate, we have synthesized (-)-α-lycorane, 
a pentacyclic alkaloid isolated from plants of the amaryllidaceae 
family, in 19.6% yield over 13 steps from commercially available 
1,4-dioxaspiro[4.5]decan-7-one.18

Chiral 1-alkyl-1-aryl-2-propanols are important building blocks for 
the preparation of chiral drugs. In 2007, Chen and co-workers reported 
that chiral RuCl2[diphosphine][diamine] complexes efficiently catalyze 
the hydrogenation of racemic 1-alkyl-1-aryl-2-propanones via DKR to 
afford chiral alcohols.22 For example, the asymmetric hydrogenation of 
racemic 3-(3-bromophenyl)-4-(4-chlorophenyl)-2-butanone catalyzed 
by RuCl2[(Sa)-Xyl-BINAP][(S)-DAIPEN] (DAIPEN = 1-isopropyl-
2,2-bis(4-methoxyphenyl)ethylenediamine) yielded the corresponding 
chiral alcohol with 95% ee but with lower diastereoselectivity 

eq 3 (Ref. 16)
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(syn:anti = 8:1). Higher diastereoselectivity (syn:anti up to 23:1) could 
be achieved with RuCl2[(Ra)-Xyl-PhanePhos][(S,S)-DPEN] (Xyl-
PhanePhos = 4,12-bis(di-3,5-xylylphosphino)[2.2]paracyclophane), but  
the enantioselectivity was lower (88% ee). Although this method has 
been employed in the synthesis of MK-0346, an oral inverse agonist for 
the CB1 receptor,23 the asymmetric hydrogenation of conformationally 
flexible, racemic, and acyclic α-substituted dialkyl ketones via DKR 
has remained a challenge.

We have investigated the use of RuCl2[SDP][diamine] catalysts 
for the asymmetric hydrogenation of conformationally flexible 
racemic dialkyl ketones via DKR.24 After careful evaluation of various 
catalysts, RuCl2[(Sa)-Xyl-SDP][(R,R)-DACH] (2b) was found to be 
the best choice for the hydrogenation of racemic 1-alkyl-1-aryl-2-
propanones via DKR, producing chiral 1-alkyl-1-aryl-2-propanols in 
high yields, good-to-excellent enantioselectivities (84-97% ee), and 
diastereoselectivities (syn:anti up to 97:3) (eq 4).24 The α-alkyl group 
strongly influenced the enantioselectivity and diastereoselectivity: 
higher enantioselectivities and diastereoselectivities were obtained 
with α-benzyl ketones. The electronic nature of the substituent on 
the phenyl ring had no obvious effect on either the enantioselectivity 
or the diastereoselectivity. However, benzylic substrates with ortho 
substituents on the phenyl ring gave relatively higher enantioselectivity 
and diastereoselectivity.

The asymmetric hydrogenation of a fluorinated racemic α-benzyl 
1-aryl-2-propanone catalyzed by RuCl2[(Ra)-Xyl-SDP][(S,S)-DACH] 
(ent-2b) was utilized to prepare a key intermediate in the synthesis of 
squalene synthase inhibitor J-104,11825 (Scheme 5).24

Many natural products, such as g-lycorane,26 hexahydroapoeryso-
pine,27 and lycorine-type alkaloids,28 contain a cyclic alcohol featuring 
three contiguous stereocenters. The asymmetric hydrogenation 
of racemic α,α’-disubstituted ketones via DKR offers a potential 
synthetic approach to this unit. However, since these ketones have four 
stereoisomers, controlling the enantio- and diastereoselectivity of their 
hydrogenation is extremely difficult. To address this challenge, we have 
investigated the asymmetric hydrogenation of racemic cycloalkanones 
containing an α-alkoxycarbonylmethyl or ethyl group and an α-aryl 
group. Fortunately, RuCl2[SDP][diamine] complexes efficiently 
catalyzed the hydrogenation of these substrates, with RuCl2[(Sa)-Xyl-
SDP][(R,R)-DPEN] (1d) leading to the desired product from racemic 
2-ethoxycarbonylmethyl-6-phenylcyclohexanone with 98% ee and 
> 99:1 cis,cis selectivity. Interestingly, the ester group in the substrate was 
hydrogenated to the corresponding alcohol at room temperature during 
the reaction. Various α-ethoxycarbonylalkyl-α′-arylcycloalkanones 
were hydrogenated with this catalyst in high yields (86-98%) and with 
good-to-excellent enantioselectivities (75-99.9% ee) (eq 5).6 Both the 
side-chain ester group and the aryl group of the substrate were necessary 
for high enantioselectivity; changing the ester group to an alkyl group 
led to lower enantioselectivities (Me, 73% ee; Bn, 27% ee). Good-to-
high enantioselectivities were also observed when the ester group was 
replaced with the N,N-dimethylaminocarbonyl group (CONMe2, 92% 
ee), the N-benzylaminocarbonyl group (CONHBn, 79% ee), or the 
benzyloxymethyl group (BnOCH2, 84% ee).

Using this highly efficient method for constructing a cyclic alcohol 
with three contiguous stereocenters, we synthesized the amaryllidaceae 
alkaloid (+)-g-lycorane in 45% overall yield from commercially 
available 2-cyclohexenone in 8 steps (Scheme 6).6

Chung et al. recently employed the asymmetric hydrogenation 
via DKR of racemic 1,2-diaryl-1-pentanone—using RuCl2[(Sa)-
Xyl-SEGPHOS®][S)-DAIPEN] (Xyl-SEGPHOS® = 5,5′-bis(di-3,5-
xylylphosphino)-4,4′-bi-1,3-benzodioxole) as catalyst (0.02 mol %)—

eq 4 (Ref. 24)

Scheme 5. Enantioselective Synthesis of Key Intermediate in the Synthesis 
of Squalene Synthase Inhibitor J-104,118. (Ref. 24)
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in the synthesis of a glucagon receptor antagonist on a kilogram scale 
(110 kg) with 98.5% ee and 99% syn-selectivity.29 

2.3. α-Aminoalkanones to Chiral 1,2-Amino Alcohols
Chiral 1,2-amino alcohols are present in various natural products and 
are a key functional group in biologically active molecules; optically 
pure amino alcohols have also been employed as chiral ligands and 
auxiliaries in asymmetric synthesis.30 Noyori and co-workers reported 
in 2000 the first example of the asymmetric hydrogenation via DKR of 
racemic α-amino ketones, specifically 2-(tert-butoxycarbonylamino)-
cyclohexanones, to chiral 1,2-amino alcohols with two stereogenic 
centers; the reaction, however, was only moderately enantioselective 
(82% ee).31 In 2007, we reported that RuCl2[(Sa)-SDP][(R,R)-
DPEN] (1c) efficiently catalyzed the hydrogenation of racemic N,N-
disubstituted α-aminocycloalkanones to the corresponding chiral cis-
b-aminocycloalkanols in 97-99.9% ee, >99:1 cis:trans selectivity, 
and with turnover numbers of up to 30,000 (eq 6).32 The reaction 
was highly tolerant of substituents on the dialkylamino group with 
respect to enantioselectivity and diastereoselectivity, whereas the 
reaction rate was sensitive to the nature of the dialkylamino group. 
Substrates with benzyl- or aryl-substituted amino groups required 
longer reaction times or higher hydrogenation pressures for complete 
reaction. The enantioselectivity of the reaction was slightly lower for 
substrates with a five- or seven-membered ring. An aza analogue of 
α-dialkylaminocyclohexanone underwent the hydrogenation reaction 
with excellent enantioselectivity (99.9% ee) and cis:trans selectivity 
(>99:1).32

An advanced intermediate for the synthesis of U-(-)-50488, a 
highly selective k-opioid agonist,33 was synthesized by this method 
(Scheme 7).32 Asymmetric hydrogenation of 2-(pyrrolidin-1-yl)-
cyclohexanone led to the corresponding (1R,2S) amino alcohol in 99.8% 
ee. Mesylation of the hydroxyl group, followed by treatment with NaN3 
and Pd/C-catalyzed hydrogenation led to chiral trans-2-(pyrrolidin-1-
yl)cyclohexanamine in 99.5% ee. This result suggests that substitution 
of the mesyl group occurred by a mechanism that did not involve the 
formation of an aziridinium intermediate,34 with the cis relationship 
between the pyrrolidino and mesyl groups being unfavorable for the 
formation of an aziridinium ion. The chiral trans-1,2-diamine was 
transformed into U-(-)-50488 in 90% yield over three steps.

RuCl2[(Sa)-Xyl-SDP][(R,R)-DPEN] (1d) was the best catalyst for 
the asymmetric hydrogenation of racemic α-aminocycloalkanones 
with a secondary amino group, providing a series of chiral b-N-
alkylamino- and b-N-arylaminocycloalkanols with 91-99.9% ee and 
>97:3 cis:trans diastereoselectivities (eq 7).35 The enantioselectivity 
and diastereoselectivity of the reaction were unaffected by the nature 
of the substituent on the N-phenyl ring of the substrate. However, 
owing to their low solubility in 2-propanol, substrates with a para-
bromo atom or an ortho-methoxy group on the N-phenyl ring required 
longer reaction times to undergo complete hydrogenation. Substrates 
with an N-alkylamino group also underwent the reaction with excellent 
enantioselectivities (98-99.9% ee) and cis:trans diastereoselectivities 
(>98:2). α-Aminocyclopentanones and α-aminocycloheptanones 
were also hydrogenated to the desired chiral cis-b-(N-arylamino)-
cycloalkanols with high enantioselectivities (91% and 94% ee, 
respectively) and high diastereoselectivities (cis:trans = 98:2 and 99:1, 
respectively). These results demonstrate that the rigidity and steric bulk 
of the spiro diphosphine ligand could be preventing coordination of the 
NH group of the substrates and products with the metal of the catalyst. 
Such coordination has previously been reported to be the major reason 
for catalyst deactivation.36 

eq 6 (Ref. 32)
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With RuCl2[(Sa)-Xyl-SDP][(R,R)-DPEN] (1d) as catalyst, 
1-(piperidinyl)-1-propanone was hydrogenated—in 96% yield, 97% 
ee, and 91:9 anti:syn selectivity at a remarkable catalyst loading of 
only 0.01 mol % and TON = 10,000—to the chiral amino alcohol anti-
1-(piperidinyl)-1-propanol,35 also known as (-)-α-conhydrine, which 
is an alkaloid isolated from the seeds and leaves of hemlock (Conium 
maculatum L.).37 Treatment of optically active (-)-α-conhydrine with 
sulfuryl chloride (SO2Cl2) afforded a cyclic sulfate, which underwent 
ring-opening acetylation with NaOAc; subsequent hydrolysis 
with K2CO3 in MeOH gave (+)-b-conhydrine in 46% overall yield 
(Scheme 8).35

Conformationally flexible substrates, such as racemic acyclic 
a-substituted aliphatic ketones, are more difficult to hydrogenate 
enantioselectively and diastereoselectively. In an investigation of 
the asymmetric hydrogenation of conformationally flexible, acyclic 
aliphatic α-N,N-dialkylamino ketones, we found that RuCl2[(Sa)-
SDP][(R,R)-DPEN] (1c) was an efficient catalyst, affording the 
corresponding chiral amino alcohols with 93-99.9% ee and 71:29 to 
>99:1 anti:syn selectivities (Scheme 9).38 The α-dialkylamino group 
of the substrates strongly influenced the diastereoselectivity of the 
reaction: Generally, ketones with a small dialkylamino group, such 
as dimethylamino or pyrrolidino, provided high diastereoselectivities. 
However, when the bulkier diethylamino group was present, the 
diastereoselectivity decreased. It is worth noting that the catalyst 
loading for this hydrogenation reaction could be lowered to 
0.01 mol % without an obvious decrease in enantioselectivity or 
diastereoselectivity. The related α-amino ketones with a secondary 
amino group afforded the corresponding chiral b-amino alcohols with 
high enantioselectivities (90-99% ee) and high anti:syn selectivities 
(91:9 to >99:1) (Scheme 9).38 

Ohkuma and co-workers reported that RuCl2[(Sa)-Tol-BINAP]-
[(R)-DMAPEN] (DMAPEN = N,N′-dimethyl-2-phenylethane-1,2-
diamine) catalyzed the hydrogenation of racemic 2-amino-1-phenyl-
1-propanone to the corresponding chiral 1,2-amino alcohol, which is 
an intermediate in the synthesis of the widely used nasal decongestant 
pseudoephedrine,39 as well as a useful chiral auxiliary in synthetic 
organic chemistry.40 High enantioselectivity and high syn-selectivity 
were obtained under the optimal reaction conditions. Itsuno and co-
workers achieved excellent enantioselectivity and syn-selectivity in 
the hydrogenation of 2-(N-benzoyl-N-methylamino)propiophenone by 
employing polymer-immobilized RuCl2[(Ra)-BINAP][(S,S)-DPEN], 
and the catalyst could be recycled five times without any loss in 
enantioselectivity.41 Hibino et al. reported that nickel complexes with 
chiral diphosphine ligands catalyzed the asymmetric hydrogenation of 
racemic aromatic α-amino ketones, although a high catalyst loading 
(10 mol %) and high hydrogen pressure (100 atm H2) were required.42

2.4. α-Aryloxyalkanones to b-Aryloxy Alcohols
Chiral b-aryloxy alcohols are common structural units in 
pharmaceuticals and bioactive natural products. We have developed 
a highly efficient method for the preparation of optically active 
secondary b-aryloxy alcohols with two adjacent stereocenters that 
relies on the asymmetric hydrogenation of racemic, aliphatic α-aryloxy 
ketones via DKR in the presence of RuCl2[(Sa)-SDP][(R,R)-DPEN] 
(1c) (eq 8).43 Conformationally rigid substrates, such as racemic 
cyclic α-aryloxy ketones, gave higher enantioselectivities (>91% ee) 
and higher cis:trans selectivities (>93:7), except for cyclopentanones 
(78% ee, cis:trans = 99:1). Good-to-high enantioselectivities (80–96% 
ee) and anti:syn selectivities (87:13 to 98:2) were achieved with 
conformationally flexible acyclic α-aryloxy ketones. The catalyst 

Scheme 8. Enantioselective Synthesis of the Alkaloids (–)-α- and 
(+)-b-Conhydrines. (Ref. 35)
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reactions, such as the catalytic asymmetric hydrogenation of racemic 
aldehydes and ketones via DKR. Efficient synthetic methods are still 
lacking for many bioactive molecules, in particular, complex natural 
products. We plan to continue to develop highly efficient methods for 
the synthesis of diverse chiral alcohols with the goal of offering new 
approaches for the synthesis of pharmaceuticals and natural products.
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was highly efficient with TONs of up to 100,000. This reaction has 
been employed to prepare the key intermediate in the synthesis of 
nonsteroidal glucocorticoid modulators.44

The alkaloid (-)-galanthamine,45 which has been employed in the 
early treatment of Alzheimer’s disease, contains a unique tricyclic 
tetrahydrodibenzofuran core structure and a chiral arylated quaternary 
carbon center. Encouraged by our successful synthesis of chiral 
b-aryloxy alcohols, we developed a new strategy for the total synthesis 
of (-)-galanthamine by employing the asymmetric hydrogenation of an 
α-aryloxycyclohexanone as a key step (Scheme 10).46 In the presence 
of RuCl2[(Sa)-SDP][(R,R)-DPEN] (1c), the hydrogenation yielded the 
corresponding chiral b-aryloxycyclohexanol in high yield (99%) and with 
excellent enantioselectivity (97% ee) and cis:trans selectivity (>99:1). 
The hydrogenation product was converted into (-)-galanthamine in 20% 
yield over 12 steps, including a Pd-catalyzed intramolecular reductive 
Heck cyclization to install the chiral arylated quaternary carbon center. 
Employing the same strategy, (-)-lycoramine,47 an acetylcholinesterase 
inhibitor and an allosteric potentiating ligand, was synthesized in 10 
steps with a 40% overall yield.46

3. Summary and Outlook
Our ongoing search for efficient methods to prepare chiral alcohols for 
the eventual synthesis of natural products and chiral pharmaceuticals, 
has led us to investigate the ruthenium-catalyzed asymmetric 
hydrogenation via DKR of racemic α-substituted alkanones and 
aldehydes. Racemic α-aryl and α-aryloxy aldehydes; α-aryl, 
aryloxy, and aminoalkanones; and α,α′-disubstituted alkanones were 
hydrogenated to the corresponding chiral primary and secondary 
alcohols with excellent enantioselectivities and diastereoselectivities 
by employing chiral spiro ruthenium complexes as catalysts. These 
highly efficient methods were successfully utilized to synthesize chiral 
pharmaceuticals and natural products. Perhaps most importantly, we 
have demonstrated that the catalytic asymmetric hydrogenation of 
racemic α-substituted alkanones and aldehydes via DKR is a promising 
method for the preparation of diverse chiral alcohols possessing one, 
two, or even three stereogenic centers. Moreover, we have shown 
that natural products can inspire the design and development of new 

Scheme 10. Enantioselective Synthesis of (–)-Galanthamine and 
(–)-Lycoramine. (Ref. 46)
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SnAP Reagents for a Cross-Coupling Approach to 
the One-Step Synthesis of Saturated N-Heterocycles

Dr. P. L. Nichols Prof. Dr. J. W. Bode
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Abstract. Saturated N-heterocycles can be found with increasing 
frequency in bioactive molecules, despite their limited commercial 
availability and challenging synthetic routes. A direct extension of 
aromatic cross-coupling methods to include saturated N-heterocycles 
remains elusive. However, the coupling of commercially available, 
or easily accessible, SnAP reagents with a wide range of aldehydes 
and ketones offers an alternative, practical, and versatile approach to 
saturated N-heterocycles.
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1. Introduction
Following the extraordinary success of metal-catalyzed cross-
coupling reactions in organic chemistry over the last few decades, the 
number of easily appended aromatic groups in bioactive molecules 
has increased dramatically. However, a high aromatic-ring count 
often leads to development-limiting problems associated with poor 
solubility, pharmacokinetics, and bioavailability.1 Such issues are now 
well recognized, and much effort has been directed toward reducing 
the number of aromatic rings by incorporating alternative groups 
such as saturated N-heterocycles (Figure 1). The incorporation of 
saturated N-heterocycles introduces solubilizing features, such as 
ionizable moieties, and a greater diversity of shapes, including chiral 
elements. It also allows the biological relevance of larger ring systems 
to be explored, while maintaining a greater degree of control over the 
overall physicochemical properties of the molecule.

Despite the growing importance of such saturated N-heterocyclic 
motifs in drug discovery, their installation has been challenging due 
to poor commercial availability of precursors and the often long 
and laborious synthetic routes needed to form these ring systems. 
This stands in contrast to the impressive repertoire of methods for 
the facile and predictable introduction of N-heteroaromatics, as 
exemplified by the palladium-catalyzed cross-coupling of stable, and 
often commercially available, aromatic halides with boronic acids 
and derivatives (Scheme 1, Part (a)).

Unfortunately, a direct extension of the metal-catalyzed cross-
coupling to saturated N-heterocycles has been elusive (Scheme 1, 
Part (b)). Recent efforts to address this well-known limitation have 
provided promising new methodologies for the derivatization of 
simple N-heterocycles; but these methods still have considerable 
shortcomings, including harsh reactions conditions, restricted 
substrate scope, and intractable N-protecting groups.2 
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As an alternative to traditional cross-coupling approaches, our 
group has recently introduced “SnAP” [Sn (tin) Amine Protocol] 
as a versatile, predictable methodology for the synthesis of saturated 
N-heterocycles from widely available aromatic, heteroaromatic, 
aliphatic, and glyoxylic aldehydes (Scheme 1, Part (c).3–7 This 
review will highlight how, since the first report on SnAP reagents in 
2013,3 an increasing number of readily accessible reagents are now 
available for the convenient synthesis of medium-ring (six- to nine-
membered) saturated N-heterocycles. Many of the SnAP reagents are 
now commercially available, and custom-made reagents for specific 
applications or targets can be prepared from simple starting materials. 

2. SnAP Reagents for N-Heterocycle Synthesis
2.1. Development of SnAP Reagents
Our development of SnAP reagents for the synthesis of N-heterocycles 
relied on our recognition that an aldehyde could serve as a readily 
introduced and identified functional group for cross-coupling and as 
the source of one of the carbon atoms in the ring (Scheme 2).3 This 
approach would allow coupling of the two starting materials to take 
place via imine formation—a generally facile and chemoselective 
process—which is followed by intramolecular cyclization. After 
considerable experimentation, we identified tin-based reagents as 
ideal reaction partners in terms of ease of use, substrate scope, and the 
preparation and stability of the reagents.

Following our first report on SnAP reagents for the preparation 
of thiomorpholines,3 we have extended the line of SnAP reagents to 
include ones suitable for the synthesis of morpholines and piperazines,4a 
a variety of bi- and spirocycles,5,6 and other medium-size rings.7 These 
reagents are easy-to-handle, air- and moisture-stable liquids, and can 
be synthesized on a multigram scale by employing a straightforward 
synthetic sequence (Figure 2).

Widely available aliphatic, aromatic, and heteroaromatic aldehydes 
and cyclic ketones are converted into various N-heterocycles using an 
operationally simple and general reaction protocol (eq 1). This process 
has outstanding substrate scope and functional-group tolerance, and 
displays an easily recognizable retrosynthetic disconnection. It offers 
the unprecedented advantage of delivering N-unprotected products 
directly, which obviates the need to cleave the often difficult-to-remove 
aryl or benzylic protecting groups that are utilized in traditional C–H 
functionalization approaches to substituted N-heterocycles.

Figure 1. Bioactive Molecules Incorporating Saturated N-Heterocycles.

Scheme 1. Employing the Metal-Catalyzed Cross-Coupling Reaction in the 
Formation of Saturated N-Heterocycles.
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2.2. Synthesis of SnAP Reagents
The easily handled, air- and moisture-stable SnAP reagents can be 
stored neat at –10 °C for months without notable decomposition. 
They can be prepared on a multigram scale from inexpensive starting 
materials by straightforward and efficient routes. Tributyl(iodomethyl)-
stannane [(n-Bu)3SnCH2I; can be stored neat at –10 °C for 1–2 weeks, 
but decomposes slowly at room temperature] is commercially available 
or can be synthesized from cheap starting materials in 50–100 g batches 
in two steps, with only one purification needed.4a,7

2.2.1. Morpholine and Thiomorpholine SnAP Reagents 
and Analogues
Morpholines and thiomorpholines are prepared from amino alcohols 
and amino thiols, respectively.3,4a In general, all amino thiols and amino 
alcohols with a substituent in the α position to the nitrogen are S- or 
O-alkylated with tributyl(iodomethyl)stannane in a simple, one-step 
reaction to afford the desired SnAP reagents.

SnAP reagents for morpholines and their medium-size analogues 
without a substituent in the α position to the amine functionality, or 
no substituents at all in the backbone, are synthesized in a three-step, 
two-pot procedure involving protection, O-alkylation, and deprotection 
steps (Scheme 3).4a,7

2.2.2. Piperazine SnAP Reagents and Analogues
Piperazine SnAP reagents and their medium-size-ring analogues are 
synthesized starting either from the amino alcohols or the diamines, 
depending on the desired substitution pattern on the backbone of the 
requisite SnAP reagent (Scheme 4).4a,7

3. Applications of SnAP Reagents
SnAP reagents can be utilized in a simple and effective protocol to 
prepare a diverse range of saturated, substituted N-heterocycles as 
exemplified in Scheme 5.4 

3.1. Synthesis of Six-Membered Rings
Unprotected, substituted morpholines, piperazines, and thiomorpholines 
prepared with SnAP reagents 5–8, 13, 18, 19, and 20 were obtained 
in good-to-excellent yields by employing electronically and sterically 
diverse aromatic, heteroaromatic, and aliphatic aldehydes—one of the 
most widely available classes of starting material (eq 2).3,4a A single 
reaction protocol was employed in all of the cyclization reactions, and 
we anticipate that substrate-specific optimization should be possible if 
higher yields and/or faster reaction times are necessary. 

In general, the formation of six-membered rings tolerates a variety 
of functional groups such as esters, organohalides, amines, and a 
variety of heterocycles; and the cyclization step takes place under mild 
conditions at room temperature. For the most challenging substrates, 
larger amounts of protodestannylated side-products were observed.
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is remarkable, however, that this process can easily access medium-
size rings, even in cases where the SnAP reagents do not contain any 
backbone elements that would favor cyclization (Figure 3).7 

3.3. Spirocycles from Ketones
Saturated, spirocyclic N-heterocycles8 are regarded as promising 
scaffolds for drug discovery and development.9 However, relatively 
few multifunctional saturated spirocycles are actually available for use 
due to the scarcity of methods for their synthesis. A major challenge in 
this area is the preparation of diverse spirocycles by the union of two 
discrete components.10,11 The reaction of cyclic and α-CF3-substituted 
ketones with SnAP reagents 6–8, 13, 18, and 19 affords saturated, 
spirocyclic and α-CF3-substituted N-heterocycles under operationally 
simple reaction conditions (Scheme 6).6 

3.4. Customized SnAP Reagents for C-Substituted 
Spirocycle Formation
We envisaged the preparation of customized SnAP reagents as cross-
coupling partners for aldehydes and ketones in order to form more 
elaborate C-substituted bicyclic and spirocyclic structures. These new 
SnAP reagents proved compatible with a variety of aldehydes and 
ketones. The cyclization using our standard SnAP conditions provided 
the desired C-substituted bicyclic and spirocyclic morpholines and 
piperazines. Coupling partners containing functional groups such as 
esters, aldehydes, and a MIDA ester provided scaffolds suitable for 
further functionalization (Figure 4).5 

3.5. SnAP Reaction Limitations
The main drawback of this methodology is the dependence on tin and 
its related toxicity.12  However, the large difference in polarity between 
the tin byproducts and the desired N-heterocycles simplifies the 
purification by column chromatography, and most of the tin byproducts 
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3.2. Synthesis of Medium-Size Rings
SnAP reagents can also be utilized to prepare more challenging 
medium-size rings.7 Reagents suitable for the synthesis of saturated 
seven-, eight-, and nine-membered-ring N-heterocycles, including 
diazepanes and oxazepanes, have been designed and synthesized. The 
substrate scope and functional group tolerance were similar to those 
observed in the synthesis of the six-membered-ring analogues, albeit 
with somewhat lower yields due to increased protodestannylation. It 
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can be removed prior to purification by simple extraction with 
mixtures of acetonitrile and hexanes.13 Furthermore, the unprotected 
N-heterocycles can be converted into their salts to remove any last traces 
of tin impurities. The use of aliphatic aldehydes and ketones involves 
intermediate imines that readily undergo enamine tautomerization; for 
example, 3-pyrrolidinone and 3-piperidinone. In these cases, along 
with the desired N-heterocycles, larger amounts of protodestannylation 
byproducts are typically observed. Efforts toward improving the utility 
of this class of substrates are currently ongoing.

3.6. Mechanistic Considerations
Our investigation to date implicates a radical-based process initiated by 
a copper-mediated oxidation of the carbon–tin bond to form a stabilized 
primary carbon radical (Scheme 7).3,7 Although radical cyclizations 
onto alkenyls typically proceed via exo-bond formation, the SnAP 
reagents, as aza analogues, prefer formation of the endo products due 
to thermodynamic and kinetic factors.14 In principle, the cyclization 
should be catalytic in copper, but coordination of the unprotected 
N-heterocycles to Cu(II) might lead to catalyst inhibition. Efforts to 
render this process catalytic are yielding encouraging results.

3.7. Catalytic Variant
Preliminary results from the elaborate screening of the reaction 
conditions—including solvent, ligands, and additives—appear 
promising. In the presence of a commercially available bisoxazoline 
ligand and using hexafluoroisopropanol (HFIP) as the sole solvent, 
the amount of Cu(OTf)2 needed can be lowered to 10 mol %, and the 
reaction still affords the desired unprotected N-heterocycles with a 
broad substrate scope (eq 3).15

4. Conclusion
SnAP reagents are a stable, easy-to-handle, and rapidly expanding class 
of reagents that offer a convenient and general approach to the synthesis 
of small-to-medium-size N-heterocycles, bicycles, and spirocycles. 
They have an outstanding substrate scope, and their coupling with 
widely available aliphatic, aromatic, and heteroaromatic aldehydes and 
ketones provides access to a large variety of N-heterocycles that are 
challenging to prepare using existing synthetic methods. SnAP reagents 
and their products should be of great interest in drug discovery, since 
they can provide ready access to differentially substituted analogues 
for structure–activity relationship (SAR) studies, and since they greatly 
expand the availability of saturated N-heterocycles.16,17 
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A variety of substituted heterocycles can be readily synthesized 
by the trapping of cyclic alkynes. Aldrich offers aryne, indolyne, 
pyridyne and, soon, the first piperidyne precursor based on 
chemistry developed in Professor Neil Garg’s laboratory.

 
Advantages of cyclic alkyne precursors include

• Generation of cyclic alkynes in situ under mild conditions

• Room temperature reactions

• Compatibility with halides and other cross-coupling partners
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The 12 Principles of Green Chemistry
The green chemistry concept applies innovative scientific solutions 
to solve environmental issues. The 12 Principles of Green Chemistry, 
developed by Paul T. Anastas and John C. Warner, can be grouped 
into “Reducing Risk” and “Minimizing the Environmental Footprint.”

Sigma-Aldrich strives to support the growth of greener 
technologies and manufacturing. We provide application-based 
greener solvent alternatives for use in chemical reactions and 
chromatography—reducing both risk and the environmental 
footprint. 

Principle 5.  Safer Solvents and Auxiliaries 
The use of auxiliary substances (e.g., solvents, separation 
agents, etc.) should be made unnecessary wherever 
possible and innocuous when used.

Look for the Greener Alternatives Program icon  
on our website.

Greener Solvents and Their Applications

Prod. No. Solvent Alternatives Undesired Solvents Applications
745588 Ethyl acetate/Ethanol 3:1 (v/v) solution, CHROMASOLV® DCM Purification, Analysis1,2

34873 Heptane, CHROMASOLV®, for HPLC, ≥99% Hexane, pentane Reaction, Analysis3

246654 Heptane, anhydrous, 99% Hexane, pentane Reaction, Purification3

673277 2-Methyltetrahydrofuran, anhydrous, ≥99%, inhibitor-free 
(2-MeTHF)

DCM, THF, diisopropyl ether, diethyl ether Reaction4

414247 2-Methyltetrahydrofuran, anhydrous, ≥99.0%, contains 
250 ppm BHT as stabilizer (2-MeTHF)

DCM, THF Reaction4

791962 Cyclopentyl methyl ether, anhydrous, ≥99.9%,  
inhibitor-free (CPME)

THF, MTBE, 1,4-dioxane and other ether solvents Reaction,5 Purification6 

675970 Cyclopentyl methyl ether, anhydrous, ≥99.9%, contains 
50 ppm BHT as inhibitor (CPME)

THF, MTBE, 1,4-dioxane and other ether solvents Reaction,5 Purification6

270989 Ethyl acetate, anhydrous, 99.8% DCM, DCE Reaction, Purification7

517127 Dimethyl carbonate, anhydrous, ≥99% (DMC) DMF, DCM, DME Reaction8

244511 Toluene, anhydrous, 99.8% Benzene Reaction7

271004 Acetonitrile, anhydrous, 99.8% DMF, DMA, NMP Reaction7

The green logo is a trademark of Sigma-Aldrich Co. LLC, and CHROMASOLV is a registered trademark 
of Sigma-Aldrich Laborchemikalien GmbH.
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Development of Solvent Selection Guides
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Abstract. A review of the development of solvent selection guides 
that focuses on the efforts of major pharmaceutical companies and 
several academic groups to provide guides that facilitate the selection 
of more benign solvents for use in synthetic chemistry.
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1. Introduction
The sustainability of chemical processes is of increasing importance 
within the chemical industry and is becoming a key concern for a wider 
range of practitioners.1 Historically, process chemists have been the 
leading proponents of sustainable chemistry practices and, while this 
does remain integral to chemical development operations, sustainability 
is now becoming a significant consideration earlier on in the discovery 
phase of industrial, as well as academic, research.2

In this regard, solvent is one of the largest overall components used 
in chemical reactions. For example, solvent has been estimated to 
account for over half of the total material utilized to manufacture active 
pharmaceutical ingredients.3 Based on this knowledge, and perhaps 
unsurprisingly, solvent was identified very early on in the sustainable 
chemistry revolution as a priority area for research because of the direct 
and substantial impact that a change in this area may have.

Consequently, over approximately the past 15 years, efforts have 
been made to identify existing solvents that exhibit undesirable 
properties from an environment, health, and safety (EHS) perspective 
such that, wherever possible, solvents with an unacceptable profile 
may be avoided. In addition, considerable research has been invested 
in identifying replacements for solvents that are less favorable from 
a sustainability perspective. These efforts have resulted in a series of 
solvent selection guides that helpfully describe the alignment of a broad 
range of widely used solvents with sustainable chemistry principles.

2. Development of Solvent Selection Guides
Two principal approaches have been taken toward providing guidelines 
to assist with solvent selection. The first helps the practitioner select 
a priori a more sustainable solvent for a reaction, while the second 
approach allows an existing less favorable solvent to be supplanted 
with a more benign alternative. A series of reports have emerged over 
the past 15 years from leading pharmaceutical companies detailing their 
assessment of what solvents they consider to be favorable or unfavorable 
(and anywhere in between). Their evaluations were based on a range 
of criteria encompassing EHS considerations and considerations that 
relate to operational costs and impact on life-cycle management.4–8 In 
a more applied approach, several industrial and academic groups have 
published task-specific guides to help facilitate the replacement of an 
unfavorable solvent within widely used processes or reactions such as 
chromatographic purification,9,10 amide-bond formation,11 reductive 
amination,12 and olefin metathesis.13 

2.1. General Solvent Selection Guides
As stated above, the development of solvent selection guides has 
been driven principally by industry, in particular, by several large 
pharmaceutical companies.4–8 Accordingly, the guidance delivered is 
broadly similar, with typically only small variations in the perceived 
environmental impact of a particular solvent, and these variations 
are generally related to the nature and number of the variables being 
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The desire to transition away from harmful solvents to more 
favorable alternatives on an industrial scale was clearly demonstrated 
by GSK in an analysis of its pilot plant operations.3 For example, 
undesirable dichloromethane ranked #3 for usage in 1999, but dropped 
to #8 in 2005, a positive movement away from the use of this solvent. 
Conversely, the more favorable isopropyl alcohol increased in usage 
from #5 to #1 in the same period of time, while heptane (a hexane 
replacement) increased from #12 to #5, again demonstrating positive 
movements toward solvents that, following the available guidance, 
were considered more benign.

The perspective of precisely how well aligned a particular solvent is 
with the ethos of sustainability has closely correlated with the available 
guidance, and this perspective has evolved as the guidance has developed 
and matured. An analysis of the evolution of GSK’s solvent guide over 
12 years (through the three published iterations) provides an interesting 
snapshot of how perspectives changed as a function of time (Figure 
1).5 For example, taking a subset of 12 common solvents and tracking 
the average sustainability score (as a percentage of the total possible 
score) arising from GSK’s analysis using selected available variables 
from 1999 (4), 2005 (5), and 2011 (6) illustrate the change in perceived 
sustainability over this time period (note that legislation issues are not 
taken into account). In particular, this analysis demonstrates that the 
impact of the introduction of a larger range of analyzed variables serves 
to generally increase the sustainability score of the solvent. Reasons 
for this are unclear but may be due to the introduction of additional 
variables that tend to score highly for most solvents, such as reactivity/
stability (GSK 2011: >75% of solvents scored ≥8/10 for this criterion), 
which may lead to a skewed average sustainability score. 

Taking the information available in all of these published guides, a 
more holistic solvent selection guide is shown in Table 2, along with 
suggested alternatives to assist in supplanting a range of less desirable 
solvents (Table 3). A point to note is that some suggested alternatives 

Table 1. Development of Solvent Selection Guides by Pharmaceutical 
Companies: Chronological Escalation of Analysis Detail

Year Company Factors Considered in Determining the Sustainability 
Credentials of a Given Solvent

1999 GlaxoSmithKline Waste, environmental impact, health, safety

2005 GlaxoSmithKline Waste, environmental impact, health, safety, LCA

2008 Pfizer Environmental/regulatory considerations, worker safety

2011 GlaxoSmithKline
Waste, environmental impact, health, safety, LCA, 
flammability/explosion, reactivity/stability, legislation flag, 
physical properties

2013 Sanofi
Environmental hazard bands, health, safety, physical 
properties, water miscibility, source, industrial/legal 
constraints, ICH limits, biodegradability, resistivity, cost

LCA = life-cycle analysis.  ICH = International Conference on Harmonization (of Technical Requirements 
for Registration of Pharmaceuticals for Human Use).

Figure 1. Evolution of GSK’s Sustainability Score of 12 Selected Solvents from 1999 to 2011. (Ref. 5)

employed in the assessment. The use of a traffic-light-type guide to 
facilitate solvent selection is also common. This familiar representation 
is broadly accessible for practitioners and is designed to facilitate 
movement to a more sustainable solvent choice. Over the years, 
the depth of analysis relating to the sustainability credentials of a 
given solvent has increased markedly and in parallel with the best 
guidance available at the time (Table 1). In 1999, GlaxoSmithKline 
(GSK) published the first solvent selection guide,5a which has been 
subsequently embellished with follow-up publications in 20055b and 
2011.5c In 1999, the level of scrutiny a solvent was subjected to was 
four-fold: waste, environmental impact, health, and safety. Life-Cycle 
Analysis (LCA)14 was included in the analysis by 2005, and a further 
series of considerations in 2011. The most recent guide, from Sanofi in 
2013,7 employed an extensive range of factors in the analysis, with at 
least 11 components constituting this new analysis.
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are not necessarily desirable themselves, but are preferred relative to 
the progenitor system for which a replacement is sought. For example, 
CH2Cl2 should be used as a replacement for CHCl3, CCl4, or DCE only 
where no other options are available.

2.2. Task-Specific Solvent Selection Guides
2.2.1. Chromatography
Chromatographic purification has been identified as the largest 
consumer of solvent within common synthetic processes.3 Accordingly, 
adopting green chemistry principles within chromatography could 
have a significant impact on the overall sustainability of a chemical 
process without requiring substantial investment in terms of reaction 
development or optimization. In the 1960s, Neher published the first 
widely used equielutropic series that assisted in the identification 
of equipolar eluent systems for chromatographic purification.15 
Sustainability, however, was not necessarily a prevailing concern 
at the time, and this series was largely based upon solvents that are 
not in keeping with current green chemistry principles (for example, 
chlorinated solvents, hexane). 

In the past few years, two studies—one from a group of industrial 
chemists at Amgen10a and the other from a collaboration between an 
academic group at the University of Strathclyde, GlaxoSmithKline 
(GSK), and Sigma-Aldrich (SA)9—sought to provide some guidance 
toward improving solvent selection in this area. These studies 
specifically targeted the replacement of CH2Cl2, which is commonly 
used in conjunction with MeOH as a modifier for the purification of 
relatively polar compounds. 

The Amgen study focused on the use of alcohol- (MeOH, EtOH, 
i-PrOH) and additive-modified (AcOH, NH4OH) mixtures of heptanes, 
EtOAc, and tert-butyl methyl ether (TBME) for the purification of a 
range of 26 drug-like molecules on silica, and helpfully presented a 
modern equielutropic series based on these mixtures in comparison to 
MeOH–CH2Cl2. 

The Strathclyde/GSK/SA group adopted a slightly different 
approach and focused on establishing a direct replacement for CH2Cl2 
while retaining MeOH as the modifier. Ultimately, cyclopentyl methyl 
ether (CPME) was identified as a potential greener surrogate for CH2Cl2, 
providing comparable and, in some cases improved, chromatographic 
results on normal silica gel. Similarly to the Amgen approach, this 
study also evaluated their suggested replacement solvent system on a 
95-member library of drug-like and fragment compounds.

Table 2. A Summarized Solvent Selection Guide Based on the Analyses by GSK, Pfizer, and Sanofi. (Color key: red, solvents that should be avoided where 
possible; gray, solvents with some issues; green, solvents that are preferred.)

Alkanes Halogenated EthersEsters KetonesAromatics Dipolar AproticAcids Alcohols Bases

Acetic anhydride
Acetic acid

Propionic acid

Trichloroacetic acid
Chloroacetic acid

Trifluoroacetic acid

1-Butanol
Water

2-Butanol
Cyclohexanol

Ethylene glycol

Isoamyl alcohol

2-Ethylhexanol

Glycerol

2-Pentanol

2-Methoxyethanol
1,2-Propanediol
1,3-Propanediol

1,4-Butanediol
Benzyl alcohol

t-Butanol
Ethanol

1-Propanol
Methanol

Isopropyl alcohol

Cyclohexane
n-Heptane

Methylcyclohexane
Methylcyclopentane

Isooctane
2-Methylpentane

n-Hexane
cis-Decalin

Pentane
Pet. ether

Mesitylene
Cumene

Toluene
p-Xylene

Benzene

Trichloroacetonitrile
Chlorobenzene

Chloroform
Carbon Tetrachloride

1,2-Dichlorobenzene
1,2-Dichloroethane

Fluorobenzene

Perfluorohexane

Dichloromethane

Perfluorocyclohexane

Perfluorotoluene
1,2,4-Trichlorobenzene
2,2,2-Trifluoroethanol

Trifluorotoluene

Dimethylpropylene urea
Acetonitrile

Dimethyl sulfoxide
Formamide

Propanenitrile

N,N-Dimethylacetamide
Carbon disulfide

N,N-Dimethylformamide
N-Methylformamide

Nitromethane
N-Methylpyrrolidinone

t-Butyl acetate
n-Butyl acetate

Dimethyl carbonate
n-Propyl acetate
i-Propyl acetate

Methyl acetate

Ethoxybenzene
Di(ethylene glycol)

Sulfolane
Tri(ethylene glycol)

t-Amyl methyl ether
Anisole

t-Butyl ethyl ether
t-Butyl methyl ether

DEG monobutyl ether

2-Methyltetrahydrofuran

Di-n-butyl ether

Diphenyl ether

Cyclopentyl methyl ether

Cyclohexanone
Acetone

Cyclopentanone
Methyl i-butyl ketone

3-Pentanone
2-Pentanone

Methyl ethyl ketone

Pyridine
N,N-Dimethylaniline

Triethylamine

Diethyl ether
Bis(2-methoxyethyl)ether

Diisopropyl ether
1,2-Dimethoxyethane

1,4-Dioxane
Dimethyl ether

Tetrahydrofuran

Ethyl formate
Ethyl acetate

Ethyl lactate
Ethyl propionate

Methyl lactate

Propylene carbonate

Ethylene carbonate

n-Octyl acetate

Isopar™ G

Undesirable Solvents Alternatives

Pentane
n-Hexane

n-Heptane

Diisopropyl ether
Diethyl ether

1,4-Dioxane
1,2-Dimethoxyethane

Chloroform
Carbon tetrachloride

1,2-Dichloroethane

N,N-Dimethylformamide
N,N-Dimethylacetamide

N-Methylpyrro lidinone

Dichloromethane

Dichloromethane

Acetonitrile

Benzene

Pyridine

Toluene

Triethylamine

Dimethyl carbonate
t-Butyl methyl ether

Ethyl acetate
2-Methyltetrahydrofuran

Toluene
Isopropyl alcohol

Cyclopentyl methyl ether
t-Butyl methyl ether

Tetrahydrofuran

2-Methyltetrahydrofuran

2-Methyltetrahydrofuran

t-Butyl methyl ether

Table 3. Suggested Alternatives to Undesirable Solvents

Table 4. Replacement of Dichloromethane in Chromatographic Purification 
(Ref. 9)

Direct Replacement

Alternatives

MeOH/CPME

ROH/EtOAc/Heptane
ROH/TBME
ROH/EtOAc/TBME

+ NH4OH for basic compounds
+ AcOH for acidic compounds

MeOH/CH2Cl2

Both of these studies provided the first guidance for identifying 
eluents that can be used in a practical sense to replace CH2Cl2 in 
chromatography (i.e., utilizing a broad range of real examples). A 
summary of this guidance is provided in Table 4.9 
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2.2.2. Reaction-Specific Solvent Selection Guides
Over the past few years, several studies have emerged that evaluate the 
performance of a range of established or emerging alternative solvents 
within widely used chemical transformations.11–13 Many of the most 
common organic reactions employ solvents that have considerable 
issues from the sustainability perspective—DMF and chlorinated 
solvents in particular. As such, the primary aim of these reaction-specific 
investigations has been to establish the best alternative media without 
compromising the chemistry either from an efficiency perspective (i.e., 
yield) or from a practical viewpoint (i.e., setup, temperature, time, etc.).

Amide-bond formation is one of the most widely practiced 
organic reactions.16,17 Indeed, a 2011 survey of the types of reaction 
used by industrial practitioners found that amidation accounted for 
approximately 16–17% of all transformations carried out in a medicinal 
chemistry environment.16,17 In addition, DMF remains the solvent of 
choice for the majority of amide-bond-forming processes, and, for 
this reason, an effort was undertaken to provide a general alternative 
to DMF (as well as CH2Cl 2) for amide-bond-forming reactions. The 
resulting comprehensive survey of eight alternative solvents within 
four benchmark reactions (aryl acid–aryl amine, aryl acid–alkyl amine, 
alkyl acid–aryl amine, and alkyl acid–alkyl amine) and using five 
common amidation reagents found that dimethyl carbonate (DMC), 
EtOAc, and 2-MeTHF are viable alternatives (Scheme 1, Part (a)).11 
This study also compared the reaction time in order to demonstrate 
the utility of the proposed replacements, alongside CH2Cl2 and DMF, 
in a representative application using amines and carboxylic acids that 
displayed the functionality common to Discovery Phase Medicinal 
Chemistry. 

A similar analysis from the same research team was performed on 
another staple of industrial organic synthesis—reductive amination.12 
Similarly to amidation processes, reductive amination is broadly 
utilized16,17 but has a heavy reliance on the use of chlorinated solvents, 
such as CH2Cl2 and DCE.12 A thorough investigation of 12 benchmark 
reactions—employing representative examples of 12 amine classes in 
reductive amination with both alkyl and aryl aldehydes and using three 
different reductants and 10 solvents—found EtOAc to be a suitable 
replacement solvent in these reactions (Scheme 1, Part (b)).12 Once 
more, the generality of these alternative conditions was exemplified 
through application to a set of 21 amine syntheses with an indication of 
reaction efficiency.

The replacement of chlorinated solvents within key reactions 
continues to be a strong theme for research. Olefin metathesis is another 
key organic transformation that routinely employs chlorinated solvents. 
It was recently shown that CH2Cl2 could be replaced, once more, with 
EtOAc and DMC for cross-metathesis and ring-closing metathesis 
reactions (Scheme 1, Part (c)).13 

3. Conclusions and Outlook
Over the past 15 years, a combination of industrial and academic 
research has provided a series of guides that have been designed to 
assist the practitioner with the selection of a more sustainable solvent 
for synthetic transformations. Of particular interest has been the 
replacement of solvents that are viewed as particularly problematic from 
a sustainability perspective—especially DMF and chlorinated solvents. 
As new guidance emerges and new alternative solvents researched 
and discovered, the identification of alternative solvents suitable for 
supplanting other problematic media will no doubt continue.

Indeed, beyond the guides described above, Grignard additions have 
recently been shown to be effective using deep eutectic solvents as a 
replacement for conventional ethereal solvents, as well as requiring 
a less stringent reaction setup: at room temperature and using air 
as the atmosphere.18 Moreover, a series of specific guides and more 
general information on the selection of greener reagents for reactions 
are beginning to emerge, allowing facile selection not only of greener 
solvents for reactions but also of the reagents needed.6,19 
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