

Selection Guide: High-Purity Metal Salts for the Synthesis of Cathode Active Materials (CAM)

Introduction

Cathode Active Materials (CAM) are vital for lithium-ion battery performance, influencing energy density, cycle life, safety, and cost. Choosing high-purity salt precursors is critical to achieving optimal material purity, morphology, and phase formation, which directly determine battery efficiency and longevity. This guide helps users identify the best salt precursors for their preferred synthesis routes and CAM characteristics, supporting advanced battery performance for electric vehicles and renewable energy storage. These synthesis types include:

- Co-precipitation
- Sol-gel
- Hydrothermal
- Spray pyrolysis
- Solid state
- Combustion
- Emulsion drying
- Solvothermal
- Pichini method
- RAPET method

CAMs serve as the host for lithium ions during operation, and their composition, crystallinity, and particle morphology govern electrochemical behavior and durability. Selecting precursor salts with appropriate purity and chemical properties ensures uniform cation distribution, minimizes defects, and enhances lithium-ion mobility, key factors for high capacity and stable cycling.^[1-3]

Table 1. Determine the best precursors and synthesis strategies for CAM through their impact on cathode properties and battery performance [3-14]

Method	Key Precursor	Advantages of Synthesis method	Impact on CAM and Battery Performance
Coprecipitation	Nitrates & Sulfates	<ul style="list-style-type: none"> Improved homogeneity and morphology Scalable cost Tunable composition High yield 	<ul style="list-style-type: none"> Precise stoichiometry Uniform particle size Better rate capability Increased tap density Reduced defects
Sol-Gel	Acetates & Nitrates	<ul style="list-style-type: none"> High surface area Small uniform particles Low agglomeration Excellent cycling stability 	<ul style="list-style-type: none"> Fine morphology Long-term cycling stability Better electrochemical performance Strong structural stability
Hydrothermal/ Solvothermal	Acetates & Nitrates	<ul style="list-style-type: none"> Low energy consumption Shorter reaction times Improved crystallinity 	<ul style="list-style-type: none"> Excellent rate capability Better cyclic stability Higher specific capacity
Spray Pyrolysis	Acetates & Nitrates	<ul style="list-style-type: none"> Higher production rate, Excellent reproducibility No post synthesis purification Minimal contamination 	<ul style="list-style-type: none"> Improved crystallinity Optimized morphology resulting in higher initial capacity and better rate capability
Solid-State	Carbonates, Oxides	<ul style="list-style-type: none"> Custom particle size and morphology High yield Commercial scalability 	<ul style="list-style-type: none"> Structural robustness Reduced degradation Improved longevity Longer battery life and safety

Note: Metals sulfates provide higher tap density for the final oxide materials relative to those using Nitrate salts.^[1]

Precursor Properties Driving Battery Performance

Purity: Trace metal impurities adversely affect crystal lattice integrity, phase purity, and particle morphology, which directly degrade ionic conductivity, capacity, rate capability, and cycling stability in batteries. Careful control of precursor purity is essential to optimize CAM synthesis and ensure high battery performance.^[4, 15, 16]

Recommendation: Use high-purity salts ($\geq 99.9\%$) to minimize adverse impurities. These salts have been specifically developed through a multi-step purification process to minimize 32–68 trace metal impurities to ppm levels, ensuring the quality you need for optimal material development.

Table 2. Influence of high-purity salts on battery synthesis optimization.

Material Property	Importance for CAM Synthesis	Desired Characteristics	Impact on Battery Performance
High Purity (Trace Metal Basis)	<ul style="list-style-type: none"> Minimizes defect sites, secondary phases Improves particle morphology 	<ul style="list-style-type: none"> Ultra-high purity Low trace metals (ppm) Low anions (ppm) 	<ul style="list-style-type: none"> Enhances ionic conductivity Improves cycle life and stability Optimizes overall electrochemical performance

Table 3. Trace metal impurities and their effects in CAM synthesis [15-19]

Impurity	Impact on PCAM Synthesis	Battery Performance Effect
Aluminum	<ul style="list-style-type: none"> Detrimental to morphology Forms a high number of small secondary particles 	Reduced electrochemical performance, including lower initial discharge capacity, diminished capacity retention, and decreased coulombic efficiency.
Iron	<ul style="list-style-type: none"> Disturbs the crystal structure 	Degrades crystal structure, reduces capacity and lifespan
Copper	<ul style="list-style-type: none"> Forms smaller particles with irregular sizes and uneven distribution 	Performance varies with Cu concentration in CAM, depending on the NCM type. For example, in NCM111 , higher Cu leads to lower discharge capacity and rate capability
Lead	<ul style="list-style-type: none"> Structural instability Reduces ion diffusion 	Degrades battery capacity and cycling stability
Chromium	<ul style="list-style-type: none"> Formation of inactive Cr-containing phases, surface deposits 	Controlled Cr can be beneficial for cathode performance, but unwanted Cr impurities can degrade battery function and must be carefully managed during synthesis
Magnesium	<ul style="list-style-type: none"> In excess, hinders conductivity 	Important impurity or dopant when controlled; improves structural stability, ion diffusion, cycling performance, and rate capability. Excess Mg can degrade performance, but optimal levels enhance mechanical stability and capacity retention.
Sodium	<ul style="list-style-type: none"> Causes incomplete or uneven precipitation Complicates nucleation and growth, resulting in non-uniform particle size and poor precursor homogeneity 	Excess Na increases interfacial resistance, impeding ionic conductivity, accelerating capacity fading, and reducing cycling stability

Practical Tips and FAQs

- Use our high-purity salts ($\geq 99.9\%$) certified with 32–68 trace metal data sheets for assured quality
- Store salts in airtight, moisture-free containers to prevent hydrolysis and contamination, which can alter precursor chemistry and affect phase formation during synthesis
- Choose salts with decomposition temperatures aligned to your calcination schedule to enable gradual, controlled phase formation and minimize unwanted secondary phases
- Maintain consistent pH and precursor concentrations in coprecipitation to achieve uniform particle size and stoichiometry, minimizing cation mixing and enhancing lithium-ion mobility

Frequently Asked Questions (FAQs)

Q1: Why is high purity important for CAM precursors?

A: High purity minimizes harmful impurities that create defects and secondary phases, which degrade ionic conductivity, capacity, and cycle life. Using certified high-purity salts ensures consistent electrochemical performance.

Q2: Can I use lower-cost technical grade salts?

A: Lower-grade salts often contain metal impurities (Fe, Al, Cu) that lead to poor crystal integrity and rapid capacity fade. Investing in high-purity salts reduces synthesis failures and improves battery reliability.

Q3: How does precursor thermal stability affect the final CAM?

A: Salt precursors with appropriate decomposition temperatures enable controlled crystal growth and phase purity, leading to better cycling stability and capacity retention

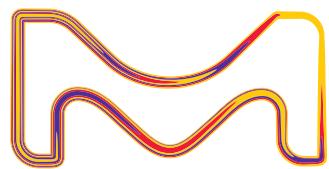
Q4: How to prevent cation mixing during synthesis?

A: Precise control of precursor stoichiometry, pH, and the use of high-purity salts reduce cation disorder. Uniform nucleation and controlled growth from quality precursors enhance structural stability.

Related Products

Product No.	Product Description	Description
935751	Cobalt(II) sulfate heptahydrate	≥99.99% trace metals basis
940151	Cobalt Sulfate	anhydrous, battery grade, ≥99.9% trace metals basis
939331	Nickel(II) sulfate hexahydrate	≥99.9% trace metals basis
203890	Nickel(II) sulfate heptahydrate	99.999% trace metals basis
940178	Manganese (II) sulfate monohydrate	≥99.9% trace metals basis
935719	Cobalt(II) nitrate hexahydrate	≥99.9% trace metals basis
935697	Manganese(II) nitrate tetrahydrate	≥99.9% trace metals basis
939323	Nickel(II) nitrate hexahydrate	≥99.9% trace metals basis
229415	Aluminum nitrate nonahydrate	99.997% trace metals basis
930946	Lithium nitrate	≥99.9% trace metals basis
930938	Lithium nitrate	99.999% trace metals basis
920320	Lithium acetate	99.9% trace metals basis
939374	Lithium acetate dihydrate	≥99.9% trace metals basis
931942	Lithium carbonate	≥99.9% trace metals basis
377449	Manganese(II) carbonate	≥99.9% trace metals basis
920312	Lithium hydroxide	99.9% trace metals basis
930903	Lithium hydroxide monohydrate	≥99.9% trace metals basis
221643	Cobalt(II,III) oxide	powder, <10 µm
399523	Nickel oxide	Ni(II), green, -325 mesh, 99%
377201	Manganese(II) oxide	powder, -60 mesh, 99%

- Tahmasebi, M. H., & Obrovac, M. N. (2023). New Insights into the All-Dry Synthesis of NMC622 Cathodes Using a Single-Phase Rock Salt Oxide Precursor. *ACS Omega*, 9(1), 1916–1924. <https://doi.org/10.1021/acsomega.3c08702>.
- Wu, Y., Cai, X., Lin, W., Deng, Y., Zhang, Q., Li, H., Yan, P., Zhong, G., & Xie, J. (2025). Enabling uniform lithiation in solid-state synthesis by preventing pre-matured surface grain coarsening through grain boundary engineering. *Chemical Science*. <https://doi.org/10.1039/d5sc00271k>.
- Mallick, S., Patel, A., Sun, X., Paranthaman, M. P., Mou, M., Mugumya, J. H., Jiang, M., Rasche, M. L., Lopez, H., & Gupta, R. B. (2023). Low-cobalt active cathode materials for high-performance lithium-ion batteries: synthesis and performance enhancement methods. *Journal of Materials Chemistry A*, 11(8), 3789–3821. <https://doi.org/10.1039/d2ta08251a>.
- Entwistle, T., et al. (2022). Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries. *Journal of Power Sources*. <https://doi.org/10.1016/j.egyr.2022.06.110>.
- Anklekar, S. et al. (2024). A Newer Approach for Preparation of Precursors by Hydrothermal and Sol-gel Synthesis to Produce High-purity Alumina Powders. *Taylor & Francis*.
- Nyamaa, O. et al. (2023). Critical Effects of Cation Distribution at the Matrix Level in Sol-Gel Synthesized Lithium Manganese Oxide Cathodes. *Scientific Reports*, doi: [10.3390/molecules28083489](https://doi.org/10.3390/molecules28083489).
- Kim, J., et al. (2014). Mechanochemical synthesis of Li₂MnO₃ shell/ LiMO₂ (M=Ni, Co, Mn) nanocomposites for high-performance lithium-ion battery cathodes. *Scientific Reports*. <https://www.nature.com/articles/srep04847>.
- Malik, M., et al. (2023). Review on the synthesis of LiNi_xMn_yCo_{1-x-y}O₂ (NMC) cathodes for lithium-ion batteries. *Materials Today Energy* <https://doi.org/10.1016/j.mtener.2022.101066>.
- Almazrouei, M., Park, S., Houck, M., De Volder, M., Hochgreb, S., & Boies, A. (2024). Synthesis pathway of Layered-Oxide cathode materials for Lithium-Ion batteries by spray pyrolysis. *ACS Applied Materials & Interfaces*, 16(26), 33633–33646. <https://doi.org/10.1021/acsami.4c06503>.
- Rahm, E. et al. Cathode materials for lithium-ion batteries prepared by sol-gel methods. *J Solid State Electrochem* 8, 450–466 (2004). <https://doi.org/10.1007/s10008-004-0521-1>.
- Murugan, S., Zhang, R., Janek, J., Kondrakov, A., & Brezesinski, T. (2023). Facile solid-state synthesis of a layered Co-free, Ni-rich cathode material for all-solid-state batteries. *Chemical Communications*, 59(66), 10024–10027. <https://doi.org/10.1039/d3cc03172a>.
- Dongwoo Kim, D. et al. (2024) A comprehensive review on the resynthesis of ternary cathode active materials from the leachate of Li-ion batteries. *Journal of Energy Chemistry*. <https://doi.org/10.1016/j.jec.2024.03.053>.
- Johann Chable et al. (2025). Deciphering the Impacts of Al, Fe, Li Sulfate Impurities on the Synthesis and Performances of LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂Cathode Materials. *J. Electrochem. Soc.* DOI [10.1149/1945-7111/adb64e](https://doi.org/10.1149/1945-7111/adb64e).
- Ma, G., Luo, X., Cheng, M. et al. (2025). Effect of impurities in FePO₄ raw materials on the performance of LiFePO₄ cathode materials. *Sci Rep*. <https://doi.org/10.1038/s41598-025-99729-8>.
- Meng, Z. et al. (2025). Impurity Impacts of Recycling NMC Cathodes. *Advanced Energy Materials*. <https://doi.org/10.1002/aenm.202405383>.
- Abe, Y. et al. (2024). Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review. *Heliyon*. <https://doi.org/10.1016/j.heliyon.2024.e28145>.


References

- Dong, H., & Koenig, G. M. (2019). A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials. *CrystEngComm*, 22(9), 1514–1530. <https://doi.org/10.1039/c9ce00679f>.
- Hong, M., Ho, V., & Mun, J. (2024). Comprehensive review of single-crystal Ni-rich cathodes: single-crystal synthesis and performance enhancement strategies. *Frontiers in Batteries and Electrochemistry*, 3. <https://doi.org/10.3389/fbael.2024.1338069>.
- Minnmann, P., Strauss, F., Bielefeld, A., Ruess, R., Adelhelm, P., Burkhardt, S., Dreyer, S. L., Trevisanello, E., Ehrenberg, H., Brezesinski, T., Richter, F. H., & Janek, J. (2022). Designing cathodes and Cathode active materials for Solid-State batteries. *Advanced Energy Materials*, 12(35). <https://doi.org/10.1002/aenm.202201425>.

We have built a unique collection of life science brands with unrivalled experience in supporting your scientific advancements.

Millipore® Sigma-Aldrich® Supelco® Milli-Q® SAFC® BioReliance®

Merck KGaA
Frankfurter Strasse 250
64293 Darmstadt, Germany

