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Selection Guide: High-Purity Metal Salts
for the Synthesis of Cathode Active
Materials (CAM)

Introduction

Cathode Active Materials (CAM) are vital for lithium-ion battery performance, influencing energy density, cycle life,
safety, and cost. Choosing high-purity salt precursors is critical to achieving optimal material purity, morphology,
and phase formation, which directly determine battery efficiency and longevity. This guide helps users identify

the best salt precursors for their preferred synthesis routes and CAM characteristics, supporting advanced battery
performance for electric vehicles and renewable energy storage. These synthesis types include:

e Co-precipitation
e Sol-gel

e Hydrothermal

e Spray pyrolysis
e Solid state

e Combustion

e Emulsion drying

e Solvothermal

e Pichini method
e RAPET method

CAMs serve as the host for lithium ions during operation, and their composition, crystallinity, and particle
morphology govern electrochemical behavior and durability. Selecting precursor salts with appropriate purity and
chemical properties ensures uniform cation distribution, minimizes defects, and enhances lithium-ion mobility, key
factors for high capacity and stable cycling.[*-3!
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Table 1. Determine the best precursors and synthesis strategies for CAM through their impact on cathode
properties and battery performance 314

Impact on CAM and Battery

Method Key Precursor Advantages of Synthesis method p
erformance
« Improved homogeneity and ¢ Precise stoichiometry
morphology e Uniform particle size

Coprecipitation Nitrates & Sulfates e Scalable cost e Better rate capability

e Tunable composition o Increased tap density

* High yield « Reduced defects

¢ High surface area ¢ Fine morphology

e Small uniform particles e Long-term cycling stability
Sol-Gel Acetates & Nitrates

e Low agglomeration ¢ Better electrochemical performance

e Excellent cycling stability e Strong structural stability

e Low energy consumption e Excellent rate capability
Hydrothermal/ . . . . .
Solvothermal Acetates & Nitrates e Shorter reaction times ® Better cyclic stability

e Improved crystallinity e Higher specific capacity

¢ Higher production rate, .
e Improved crystallinity
¢ Excellent reproducibility S L
Spray Pyrolysis Acetates & Nitrates * Optimized morphology resulting in
e No post synthesis purification higher initial capacity and better

rate capabilit
e Minimal contamination P Y

e Custom particle size and * Structural robustness
morphology * Reduced degradation
Solid-State Carbonates, Oxides High vield
e High yie e Improved longevity
 Commercial scalability e Longer battery life and safety

Note: Metals sulfates provide higher tap density for the final oxide materials relative to those using Nitrate salts.!!

Precursor Properties Driving Battery Performance

Purity: Trace metal impurities adversely affect crystal lattice integrity, phase purity, and particle morphology,
which directly degrade ionic conductivity, capacity, rate capability, and cycling stability in batteries. Careful control
of precursor purity is essential to optimize CAM synthesis and ensure high battery performance. 15 161

Recommendation: Use high-purity salts (=99.9%) to minimize adverse impurities. These salts have been
specifically developed through a multi-step purification process to minimize 32-68 trace metal impurities to ppm
levels, ensuring the quality you need for optimal material development.

Table 2. Influence of high-purity salts on battery synthesis optimization.

Material Property Importance for CAM Synthesis Desired Characteristics Impact on Battery Performance

e Enhances ionic conductivity

« Minimizes defect sites, secondary e Ultra-high purity
II\-IIIighIP;rity)(Trace phases « Low trace metals (ppm) e Improves cycle life and stability
etal Basis o .
e Improves particle morphology « Low anions (ppm) U g::;gzeaiggerall electrochemical
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Table 3. Trace metal impurities and their effects in CAM synthesis [15-1]

Impurity Impact on PCAM Synthesis Battery Performance Effect
e Detrimental to morphology Reduced electrochemical performance, including lower
Aluminum initial discharge capacity, diminished capacity retention, and
e Forms a high number of small secondary particles decreased coulombic efficiency.
Iron e Disturbs the crystal structure Degrades crystal structure, reduces capacity and lifespan

Performance varies with Cu concentration in CAM, depending
on the NCM type. For example, in NCM111, higher Cu leads
to lower discharge capacity and rate capability

e Forms smaller particles with irregular sizes and uneven

Copper distribution

e Structural instability
Lead Degrades battery capacity and cycling stability
e Reduces ion diffusion

« Formation of inactive Cr-containing phases, surface Controlled Cr can be beneficial for cathode performance, but

Chromium d ] unwanted Cr impurities can degrade battery function and
eposits ’ .
must be carefully managed during synthesis
Important impurity or dopant when controlled; improves
structural stability, ion diffusion, cycling performance, and
Magnesium e In excess, hinders conductivity rate capability. Excess Mg can degrade performance, but
optimal levels enhance mechanical stability and capacity
retention.
* Causes incomplete or uneven precipitation Excess Na increases interfacial resistance, impeding ionic
Sodium « Complicates nucleation and growth, resulting in non- conductivity, accelerating capacity fading, and reducing
uniform particle size and poor precursor homogeneity cycling stability

Practical Tips and FAQs
e Use our high-purity salts (299.9%) certified with 32-68 trace metal data sheets for assured quality

e Store salts in airtight, moisture-free containers to prevent hydrolysis and contamination, which can alter
precursor chemistry and affect phase formation during synthesis

e Choose salts with decomposition temperatures aligned to your calcination schedule to enable gradual, controlled
phase formation and minimize unwanted secondary phases

e Maintain consistent pH and precursor concentrations in in coprecipitation to achieve uniform particle size and
stoichiometry, minimizing cation mixing and enhancing lithium-ion mobility

Frequently Asked Questions (FAQs)

Q1: Why is high purity important for CAM precursors?

A: High purity minimizes harmful impurities that create defects and secondary phases, which

degrade ionic conductivity, capacity, and cycle life. Using certified high-purity salts ensures consistent
electrochemical performance.

Q2: Can I use lower-cost technical grade salts?

A: Lower-grade salts often contain metal impurities (Fe, Al, Cu) that lead to poor crystal integrity and rapid
capacity fade. Investing in high-purity salts reduces synthesis failures and improves battery reliability.

Q3: How does precursor thermal stability affect the final CAM?

A: Salt precursors with appropriate decomposition temperatures enable controlled crystal growth and phase
purity, leading to better cycling stability and capacity retention

Q4: How to prevent cation mixing during synthesis?

A: Precise control of precursor stoichiometry, pH, and the use of high-purity salts reduce cation disorder. Uniform
nucleation and controlled growth from quality precursors enhance structural stability.
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