
Technical Note

Selection Guide: High-Purity Metal Salts 
for the Synthesis of Cathode Active 
Materials (CAM)

Introduction
Cathode Active Materials (CAM) are vital for lithium-ion battery performance, influencing energy density, cycle life, 
safety, and cost. Choosing high-purity salt precursors is critical to achieving optimal material purity, morphology, 
and phase formation, which directly determine battery efficiency and longevity. This guide helps users identify 
the best salt precursors for their preferred synthesis routes and CAM characteristics, supporting advanced battery 
performance for electric vehicles and renewable energy storage. These synthesis types include: 

•	Co-precipitation

•	Sol-gel

•	Hydrothermal

•	Spray pyrolysis

•	Solid state

•	Combustion

•	Emulsion drying

•	Solvothermal

•	Pichini method

•	RAPET method 

CAMs serve as the host for lithium ions during operation, and their composition, crystallinity, and particle 
morphology govern electrochemical behavior and durability. Selecting precursor salts with appropriate purity and 
chemical properties ensures uniform cation distribution, minimizes defects, and enhances lithium-ion mobility, key 
factors for high capacity and stable cycling.[1–3]
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Precursor Properties Driving Battery Performance
Purity: Trace metal impurities adversely affect crystal lattice integrity, phase purity, and particle morphology, 
which directly degrade ionic conductivity, capacity, rate capability, and cycling stability in batteries. Careful control 
of precursor purity is essential to optimize CAM synthesis and ensure high battery performance.[4, 15, 16]

Recommendation: Use high-purity salts (≥99.9%) to minimize adverse impurities. These salts have been 
specifically developed through a multi-step purification process to minimize 32–68 trace metal impurities to ppm 
levels, ensuring the quality you need for optimal material development. 

Table 1. Determine the best precursors and synthesis strategies for CAM through their impact on cathode 
properties and battery performance [3–14]

Method Key Precursor Advantages of Synthesis method Impact on CAM and Battery 
Performance

Coprecipitation Nitrates & Sulfates

•	Improved homogeneity and 
morphology 

•	Scalable cost

•	Tunable composition

•	High yield

•	Precise stoichiometry 

•	Uniform particle size 

•	Better rate capability

•	Increased tap density

•	Reduced defects

Sol-Gel Acetates & Nitrates

•	High surface area

•	Small uniform particles

•	Low agglomeration 

•	 Excellent cycling stability

•	Fine morphology 

•	Long-term cycling stability

•	Better electrochemical performance

•	Strong structural stability

Hydrothermal/
Solvothermal Acetates & Nitrates

•	Low energy consumption 

•	Shorter reaction times

•	Improved crystallinity

•	Excellent rate capability 

•	Better cyclic stability

•	Higher specific capacity

Spray Pyrolysis Acetates & Nitrates

•	Higher production rate,

•	Excellent reproducibility

•	No post synthesis purification 

•	Minimal contamination

•	Improved crystallinity 

•	Optimized morphology resulting in 
higher initial capacity and better 
rate capability

Solid-State Carbonates, Oxides

•	Custom particle size and 
morphology 

•	High yield

•	Commercial scalability

•	Structural robustness 

•	Reduced degradation

•	Improved longevity

•	Longer battery life and safety

Note: Metals sulfates provide higher tap density for the final oxide materials relative to those using Nitrate salts.[1]

Table 2. Influence of high-purity salts on battery synthesis optimization.

Material Property Importance for CAM Synthesis Desired Characteristics Impact on Battery Performance

High Purity (Trace 
Metal Basis)

•	Minimizes defect sites, secondary 
phases

•	Improves particle morphology

•	Ultra-high purity

•	Low trace metals (ppm)

•	Low anions (ppm)

•	Enhances ionic conductivity

•	Improves cycle life and stability

•	Optimizes overall electrochemical 
performance

https://www.sigmaaldrich.com/IN/en/products/materials-science/energy-materials/high-purity-salts?country=US&language=en&cmsRoute=products&cmsRoute=materials-science&cmsRoute=energy-materials&cmsRoute=high-purity-salts&page=1&term=Nitrate
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https://www.sigmaaldrich.com/US/en/products/materials-science/energy-materials/high-purity-salts?country=US&language=en&cmsRoute=products&cmsRoute=materials-science&cmsRoute=energy-materials&cmsRoute=high-purity-salts&page=1&term=Acetates
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Practical Tips and FAQs
•	Use our high-purity salts (≥99.9%) certified with 32–68 trace metal data sheets for assured quality

•	Store salts in airtight, moisture-free containers to prevent hydrolysis and contamination, which can alter 
precursor chemistry and affect phase formation during synthesis

•	Choose salts with decomposition temperatures aligned to your calcination schedule to enable gradual, controlled 
phase formation and minimize unwanted secondary phases

•	Maintain consistent pH and precursor concentrations in in coprecipitation to achieve uniform particle size and 
stoichiometry, minimizing cation mixing and enhancing lithium-ion mobility

Frequently Asked Questions (FAQs)

Q1: Why is high purity important for CAM precursors?

A: High purity minimizes harmful impurities that create defects and secondary phases, which 
degrade ionic conductivity, capacity, and cycle life. Using certified high-purity salts ensures consistent 
electrochemical performance.

Q2: Can I use lower-cost technical grade salts?

A: Lower-grade salts often contain metal impurities (Fe, Al, Cu) that lead to poor crystal integrity and rapid 
capacity fade. Investing in high-purity salts reduces synthesis failures and improves battery reliability.

Q3: How does precursor thermal stability affect the final CAM?

A: Salt precursors with appropriate decomposition temperatures enable controlled crystal growth and phase 
purity, leading to better cycling stability and capacity retention

Q4: How to prevent cation mixing during synthesis?

A: Precise control of precursor stoichiometry, pH, and the use of high-purity salts reduce cation disorder. Uniform 
nucleation and controlled growth from quality precursors enhance structural stability.

Table 3. Trace metal impurities and their effects in CAM synthesis [15-19]

Impurity Impact on PCAM Synthesis Battery Performance Effect

Aluminum
•	Detrimental to morphology

•	Forms a high number of small secondary particles 

Reduced electrochemical performance, including lower 
initial discharge capacity, diminished capacity retention, and 
decreased coulombic efficiency.

Iron •	Disturbs the crystal structure Degrades crystal structure, reduces capacity and lifespan

Copper •	Forms smaller particles with irregular sizes and uneven 
distribution

Performance varies with Cu concentration in CAM, depending 
on the NCM type. For example, in NCM111, higher Cu leads 
to lower discharge capacity and rate capability

Lead
•	Structural instability

•	Reduces ion diffusion
Degrades battery capacity and cycling stability

Chromium •	Formation of inactive Cr-containing phases, surface 
deposits

Controlled Cr can be beneficial for cathode performance, but 
unwanted Cr impurities can degrade battery function and 
must be carefully managed during synthesis

Magnesium •	In excess, hinders conductivity

Important impurity or dopant when controlled; improves 
structural stability, ion diffusion, cycling performance, and 
rate capability. Excess Mg can degrade performance, but 
optimal levels enhance mechanical stability and capacity 
retention.

Sodium
•	Causes incomplete or uneven precipitation

•	Complicates nucleation and growth, resulting in non-
uniform particle size and poor precursor homogeneity

Excess Na increases interfacial resistance, impeding ionic 
conductivity, accelerating capacity fading, and reducing 
cycling stability

https://www.sigmaaldrich.com/US/en/search/ncm111?dym=scm111%2Cna1111&focus=products&page=1&perpage=30&sort=relevance&term=NCM111&type=product
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