Enzymatic Assay of α -GLUCOSIDASE (EC 3.2.1.20)

p-Nitrophenyl α -D-Glucoside as Substrate Product Nos. G5003, G6136, G7256, G8889, G0660, and G3651

PRINCIPLE:

p-Nitrophenyl α -D-Glucoside $\frac{\alpha$ -Glucosidase}{\alpha} α -D-Glucose + p-Nitrophenol

CONDITIONS: T = 37° C, pH = 6.8, A_{400nm} , Light path = 1 cm

METHOD: Spectrophotometric Stop Rate Determination

REAGENTS:

A. 67 mM Potassium Phosphate Buffer, pH 6.8 at 37°C (Prepare 100 mL in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No P5379. Adjust to pH 6.8 at 37°C with 1 M NaOH. **PREPARE FRESH.**)

B. 3 mM Glutathione, Reduced Solution (GSH) (Prepare 10 mL in deionized water using L-Glutathione, Free Acid, Reduced Form, Sigma Prod. No. G4251. **PREPARE FRESH**.)

C. 10 mM p-nitrophenyl- α -D-Glucoside Solution (PNP-Gluc) (Prepare 10 mL in deionized water using p-Nitrophenyl α -D-Glucopyranoside, Sigma Prod. No. N1377.)

D. 100 mM Sodium Carbonate Solution, (NaCarb) (Prepare 50 mL in deionized water using Sodium Carbonate, Anhydrous, Sigma Prod. No. S2127.)

E. α -Glucosidase Enzyme Solution (Immediately before use, prepare a solution containing 0.15-0.3 unit/mL of α -Glucosidase in cold deionized water.)

SSNITR01

Revised: 08/09/96

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable containers:

	Test Solution	Blank Solution
Deionized Water		0.20
Reagent A (Buffer)	5.00	5.00
Reagent B (GSH)	0.20	0.20
Reagent E (Enzyme Solution)	0.20	

Mix by inversion and equilibrate to 37°C.

Then add:

Reagent C (PNP Gluc)	0.50	0.50
----------------------	------	------

Immediately mix by inversion and incubate for exactly 20 minutes at 37°C.

Pipette (in milliliters) the following reagents into suitable containers:

Test Solution	2.00	
Blank Solution		2.00
Reagent D (NaCarb)	8.00	8.00

Mix by inversion and transfer the solutions to suitable cuvettes. Record the A_{400nm} for both the Test and Blank using a suitable spectrophotometer.

CALCULATIONS:

Units/ml enzyme =

(A_{400nm} Test - A_{400nm} Blank)(10)(5.9)(df) (18.3)(20)(2)(0.2)

5.9 = Volume (in milliliters) of reaction mixture

df = Dilution factor

18.3 = Millimolar extinction coefficient of p-Nitrophenol at 400 nm

20 = Time (in minutes) of the assay

10 = Volume (in milliliters) of Colorimetric Determination

2 = Volume (in milliliters) of reaction mix used in the colorimetric determination

SSNITR01

Revised: 08/09/96

CALCULATIONS, continued:

Units/mg solid = units/mL enzyme

mg solid/mL enzyme

units/mL enzyme

Units/mg protein =

mg protein/mL enzyme

UNIT DEFINITION:

One unit will liberate 1.0 μ mole of D-glucose from p-nitrophenyl α -D-glucoside per minute at pH 6.8 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 5.90 mL reaction mix, the final concentrations are 57 mM potassium phosphate, 0.1 mM glutathione, 0.85 mM p-nitrophenyl α -D-glucoside and 0.03 – 0.06 units α -glucosidase.

NOTES:

1. All product and stock numbers, unless otherwise indicated, are Sigma product and stock numbers.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.

SSNITR01

Revised: 08/09/96