Enzymatic Assay of ISOCITRIC DEHYDROGENASE (NADP) (EC 1.1.1.42)

PRINCIPLE:

DL-Isocitrate + β -NADP < α -Ketoglutarate + CO_2 + β -NADPH

Abbreviations:

 $\beta\text{-NADP}$ = $\beta\text{-Nicotinamide}$ Adenine Dinucleotide Phosphate, Oxidized Form

 $\beta\text{-NADPH} = \beta\text{-Nicotinamide Adenine Dinucleotide Phosphate,}$ Reduced Form

ICDH = Isocitric Dehydrogenase (NADP)

CONDITIONS: T = 37° C, pH = 7.4, A_{340nm} , Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 250 mM Glycylglycine Buffer, pH 7.4 at 37°C (Prepare 50 ml in deionized water using Gly-Gly, Free Base, Sigma Prod. No. G-1002. Adjust to pH 7.4 at 37°C with 1 M NaOH.)
- B. 6.6 mM DL-Isocitric Acid Solution (Prepare 5 ml in Reagent A using DL-Isocitric Acid, Trisodium Salt, Sigma Prod. No. I-1252.)
- C. 20 mM β -Nicotinamide Adenine Dinucleotide Phosphate Solution (β -NADP) (Prepare 2 ml in deionized water using β -Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt, Sigma Prod. No. N-0505.)
- D. 18 mM Manganese Chloride Solution (Prepare 5 ml in deionized water using Manganese Chloride, Tetrahydrate, Sigma Prod. No. M-3634.)
- E. Isocitric Dehydrogenase Enzyme Solution (Immediately before use, prepare a solution containing 0.3 - 0.6 unit/ml of Isocitric Dehydrogenase (NADP) in cold Reagent A.)

SPISOC01.001 Revised: 09/12/97

Enzymatic Assay of ISOCITRIC DEHYDROGENASE (NADP) (EC 1.1.1.42)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test </u>	<u>Blank</u>
Deionized Water	1.95	1.95
Reagent A (Buffer)	0.50	0.60
Reagent B (DL-Isocitric Acid)	0.20	0.20
Reagent C (β-NADP)	0.15	0.15
Reagent D (Manganese Chloride)	0.10	0.10

Mix by inversion and equilibrate at 37°C. Monitor the $A_{\rm 340nm}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

Immediately mix by inversion and record the increase in A_{340nm} for approximately 5 minutes. Obtain $\Delta A_{340nm}/$ minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

3 = Total volume (in milliliters) of assay
df = Dilution factor

6.22 = Millimolar extinction coefficient of β -NADPH at 340 nm 0.1 = Volume (in milliliters) of enzyme used

SPISOC01.001 Revised: 09/12/97

Enzymatic Assay of ISOCITRIC DEHYDROGENASE (NADP) (EC 1.1.1.42)

UNIT DEFINITION:

One unit will convert 1.0 $\mu mole$ of isocitrate to $\alpha\text{-ketoglutarate}$ per minute at pH 7.4 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 3.00 ml reaction mix, the final concentrations are 67 mM glycylglycine, 0.44 mM DL-isocitric acid, 1.0 mM $\beta\text{-nicotinamide}$ adenine dinucleotide phosphate 0.60 mM manganese chloride, and 0.03 - 0.06 unit isocitric dehydrogenase (NADP).

REFERENCE:

Bergmeyer, H.U. (1974) Methods of Enzymatic Analysis, Vol. 2, 624-627

NOTES:

- 1. This assay is based on the cited reference.
- 2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for information purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.

SPISOC01.001 Revised: 09/12/97