3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com # **Product Information** ALK2 (147-end), active, GST-tagged, human PRECISIO® Kinase recombinant, expressed in Sf9 cells Catalog Number **A4361** Storage Temperature –70 °C Synonyms: ACVR1, ACTRI, ACVRLK2, FOP, SKR1, TSRI ## **Product Description** ALK2 is a receptor serine/threonine kinase that is member of the ALK family and is upstream of a signaling pathway involving the SMAD proteins especially SMAD1/5/8. Knockdown of ALK2, but not TGFβRI (ALK5), abrogates endoglin-mediated decrease in cell motility of prostate cancer cells. Constitutively active ALK2 is sufficient to restore a low-motility phenotype in endoglin deficient cells. Therefore, endoglin decreases prostate cancer cell motility through activation of the ALK2-Smad1 pathway. *ALK2* is the key gene involved in fibrodysplasia ossificans progressiva (FOP), a rare autosomal dominant congenital disorder characterized by progressive heterotopic bone formation in muscle tissues.² This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 001105. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol. Molecular mass: ~67 kDa #### **Precautions and Disclaimer** This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices. # Storage/Stability The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles. Figure 1. SDS-PAGE Gel of Typical Lot: ≥70% (SDS-PAGE, densitometry) **Figure 2.**Specific Activity of Typical Lot: 39–53 nmole/min/mg #### **Procedure** ## **Preparation Instructions** Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM. Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA solution. Kinase Solution – Dilute the active ALK2 $(0.1 \mu g/\mu l)$ with Kinase Dilution Buffer to the desired concentration. Note: The specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of active ALK2 kinase for optimal results. 10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C. γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C. Substrate Solution – Dilute casein protein in water at a final concentration of 1 mg/ml. 1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water. ### Kinase Assay This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed. - 1. Thaw the active ALK2, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -32P-ATP Assay Cocktail may be thawed at room temperature. - 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl: 10 μl of Kinase Solution 5 μl of Substrate Solution 5 μl of cold water (4 °C) - 3. Set up a blank control as outlined in step 2, substituting 5 μ l of cold water (4 °C) for the Substrate Solution. - 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes. - 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper. - Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each. - 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample. - 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter. - 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity ## Calculations: 1. Specific Radioactivity (SR) of ATP (cpm/nmole) SR = $$\frac{\text{cpm of 5} \mu \text{l of } \gamma^{-32}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$ cpm – value from control (step 7) nmole – 1.25 nmole (5 μ l of 250 μ M ATP Assav Cocktail) 2. Specific Kinase Activity (SA) (nmole/min/mg) nmole/min/mg = $$\Delta$$ cpm × (25/20) SR × E × T SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume 20 = spot volume T = reaction time (minutes) E = amount of enzyme (mg) #### References - Craft, C.S. et al., Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene, 26, 7240-7250 (2007). - Shore, E.M. et al., A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet., 38, 525-527 (2006). PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC. BKR.MAM 08/16-1