

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone (800) 325-5832 (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Guaiacol

Product Number **G 5502** Store at Room Temperature

Replacement for Product Number G10903

Product Description

Molecular Formula: C₇H₈O₂ Molecular Weight: 124.1 CAS Number: 90-05-1

Melting point: 27-29 °C (upon cooling, guaiacol may remain as a liquid for a long time even at a much lower

temperature) '

Boiling point: 204-206 °C¹

Density: approximately 1.112 g/ml (liquid)¹ Extinction coefficient: E^{mM} = 2.55 (274 nm)² Synonyms: o-Hydroxyanisole, 2-Methoxyphenol

This product can be used as a hydrogen donor (substrate) in the assay of peroxidase. ^{3,4} Upon oxidation, it forms tetraguaiacol with a subsequent change in λ_{max} to 470 nm with an E^{mM} = 26.6. ^{3,5}

The presence of guaiacol in cork stoppers is responsible for some cases of cork taint causing unpleasant alterations to wine. Data suggests that guaiacol-mediated cork taint should be attributed to the degradative action on vanillic acid by bacterial strains growing on cork to produce guaiacol. 6

Two kinds of creosote have been found based on historical evidence of the medicinal uses and origins. One is wood tar creosote, a distillate of wood-tar that contains creosol and guaiacol.⁷

Guaiacol is able to inhibit prostaglandin biosynthesis like a classic NSAID, but it does not induce gastric damage.⁸

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

One gram of guaiacol dissolves in 60-70 ml of water or 1 g of glycerol. It is miscible with alcohol, chloroform, ether, oils, glacial acetic acid, and slightly soluble in petrolium ether. Although it is soluble in a sodium hydroxide solution, guaiacol forms a sparingly soluble compound in a moderately concentrated potassium hydroxide solution. ¹

References

- 1. The Merck Index, 12th ed., Entry# 4575.
- 2. J. Am. Chem. Soc., 69, 2998 (1947).
- 3. Meth. in Enzym., 2, 770 (1955).
- 4. Methods of Enzymatic Analysis, 3rd ed., Vol. I, Bergmeyer, H. U., ed., Verlag Chemie GmbH (New York, NY: 1983), pp. 267-268.
- Data for Biochemical Research, 3rd ed., Dawson,
 R. M. C., et al., Oxford University Press (New York, NY: 1986), p. 352.
- Alvarez-Rodriquez, M. L., et al., Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples. FEMS Microbiol. Lett., 220, 49-55 (2003).
- 7. Baba T., and Tani T., Wood creosote: a historical study and its preparation in combination with herbal drugs. Yakushigaku Zasshi., **36**, 7-10 (2001) (article in Japnese).
- 8. Fossati, A., et al., Effects of metoxibutropate, ibuprofen and guaiacol on the gastrointestinal system. **13**, 45-50 (1991).

HLD/AJH 8/05