

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Lectin from *Phaseolus vulgaris* Phytohemagglutinin PHA-P

Product Number **L 9017** Storage Temperature 2-8 °C

Product Description

PHA-P is a mixture of PHA-E (MW = 128 kDa) and PHA-L (MW = 126 kDa). This product is affinity purified to remove additional protein content. Purity is determined by SDS-PAGE analysis.

Lectins are proteins or glycoproteins of non-immune origin that agglutinate cells and/or precipitate complex carbohydrates. Lectins are capable of binding glycoproteins even in presence of various detergents.¹ The agglutination activity of these highly specific carbohydrate-binding molecules is usually inhibited by a simple monosaccharide, but for some lectins, di, tri, and even polysaccharides are required.

Lectin PHA-P is not inhibited easily by monosaccharides, but may be inhibited by oligosaccharides.

Lectins are isolated from a wide variety of natural sources, including seeds, plant roots and bark, fungi, bacteria, seaweed and sponges, mollusks, fish eggs, body fluids of invertebrates and lower vertebrates, and from mammalian cell membranes. The precise physiological role of lectins in nature is still unknown, but they have proved to be very valuable in a wide variety of applications *in vitro*, including:

- 1. blood grouping and erythrocyte polyagglutination studies.
- 2. mitogenic stimulation of lymphocytes.
- 3. lymphocyte subpopulation studies.
- 4. fractionation of cells and other particles.
- 5. histochemical studies of normal and pathological conditions.

Sigma offers a range of lectins suitable for the above applications. Most Sigma lectins are highly purified by affinity chromatography, but some are offered as purified or partially purified lectins, suitable for specific applications. Many of the lectins are available conjugated to (conjugation does not alter the specificity of the lectin):

- 1. fluorochromes (for detection by fluorimetry).
- 2. enzymes (for enzyme-linked assays).
- 3. insoluble matrices (for use as affinity media).

Please refer to the table for general information on the most common lectins.

Procedure

A general agglutination procedure using this lectin with 96 well plates is as follows:

- 1. Prepare a lectin solution of 1 mg/ml in PBS buffer, pH 6.8.
- 2. Pipette 50 μ l of fresh PBS into each well and add 50 μ l of the lectin solution into the first well.
- 3. Serial dilutions are made by pipetting 50 μl from each successive well into the next well.
- 4. Blood type A with a 2% hematocrit is used as the substrate.
- 5. Pipette 50 µl of blood into each well.
- 6. Visually determine agglutination.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This lectin is soluble in phosphate buffered saline, pH 7.2 (1 mg/ml).

Storage/Stability

Aggregation is thought to occur in the presence of high concentrations of 2-mercaptoethanol.

Lectin	MW (kDa)	Subunits	Specificity Blood Group Sugar		Mitogenic Activity
Abrus precatorius			_		+
Agglutinin	134	4		gal	
Abrin A (toxin)	60	2		gal	
Abrin B (toxin)	63.8	2(αβ)		gal	
Agarius bisporus	58.5	_	_	β-gal(1→3)galNAc	
Anguilla anguilla	40	2	Н	α-L-Fuc	
Arachis hypogaea	120	4	Т	β-gal(1→3)galNAc	
Artocarpus integrifolia Bandeiraea simplicifolia	42	4	T	α-gal→OMe	+
BS-I	114	4	А, В	α-gal, α-galNAc	
BS-I-A ₄	114	4	A	α -galNAc	
BS-I-B ₄	114	4	В	α-gal	
BS-II	113	4	acq, B, Tk, T	glcNAc	
Bauhinia purpurea	195	4	ас ч , b, тк, т –	β-gal(1→3)galNAc	+
	60; 120 ^a	4 2/4	-		т
Caragana arborescens	60; 120 44		-	galNAc fotuin	
Cicer arietinum		2	_	fetuin	
Codium fragile	60	4	-	galNAc	
Concanavalin A	102	4	-	α-man, α-glc	+
Succinyl-Concanavalin A	51	2	-	α -man, α -glc	+ ^b
Cytisus scoparius	-	-	-	galNAc, gal	
Datura stramonium	86	2(αβ)	-	(glcNAc) ₂	
Dolichos biflorus	140	4	A ₁	α-galNAc	
Erythrina corallodendron	60	2	-	β-gal(1→4)glcNAc	+
Erythrina cristagalli	56.8	2(αβ)	-	β-gal(1→4)glcNAc	
Euonymus europaeus	166	4(αβ)	В, Н	α-gal(1→3)gal	+
Galanthus nivalis	52	4	(h)	non-reduc. α-man	
Glycine max	110	4	_	galNAc	+ ^c
lelix aspersa	79	_	А	galNAc	
lelix pomatia	79	6	А	galNAc	
.athyrus odoratus	40-43	4(αβ)	_	α-man	+
ens culinaris	49	2	_	α-man	+
imulus polyphemus	400	_ 18	_	NeuNAc	
Bacterial agglutinin	-	_	_	galNAc, glcNAc	
ycopersicon esculentum	71	_	_	(glcNAc) ₃	
laackia amurensis	130	2(αβ)	0	sialic acid	
	40-43		0		Ŧ
Naclura pomifera		$2(\alpha\beta)$	-	α -gal, α -galNAc	
<i>Iomordica charantia</i>	115-129	4(αβ)	-	gal, galNAc	
laja mocambique mocambique		-	-	-	
laja naja kaouthia	-	_	—	-	
larcissus pseudonarcissus	26	2	(h)	α-D-man	
Perseau americana	-	-	-	-	
Phaseolus coccineus	112	4	-	-	
Phaseolus limensis	247(II) 124(III)	8 4	A	galNAc	+
Phaseolus vulgaris					
PHA-E	128	4	-	oligosaccharide	+
PHA-L PHA-P	128	4	-	oligosaccharide	+
PHA-M					

Lectin	MW (kDa)	Specificity Subunits Blood Group Sugar			Mitogenic Activity
Phytolacca americana	32	_		(glcNAc) ₃	+
Pisum sativum	49	4(αβ)	_	α-man	+
Pseudomonas aeruginosa PA-I		-	_	gal	+ ^c
Psophocarpus tetragonolobus	35	1	_	galNAc, gal	•
Ptilota plumosa	65; 170	_	В	α -gal	
Ricinus communis	00, 110		2	a gai	
Toxin, RCA ₆₀	60	2	_	galNAc, β-gal	
Toxin, RCA ₁₂₀	120	4	_	β-gal	
Sambucus nigra	140	4(αβ)	_	αNeuNAC(2→6)gal	+ ^c
3		(-1-)		galNAc	
Solanum tuberosum	50; 100 ^a	1, 2	_	(glcNAc) ₃	
Sophora japonica	133	4	А, В	β-galNAc	
Tetragonolobus purpureas	120(A)	4	Н	α-L-fuc	
c	58(BA)	2	Н	α-L-fuc	
	117(C)	4	Н	α-L-fuc	
Triticum vulgaris	36	2	_	(glcNAc) ₂ , NeuNAc	+
Ulex europaeus					
UEA I	68	_	Н	α-L-fuc	
UEA II	68	_	-	(glcNAc) ₂	
Vicia faba	50	4(αβ)	-	man, glc	+
Vicia sativa	40	4(αβ)	-	glc, man	+
Vicia villosa	139	4	$A_{1+}T_n$	galNAc	
A_4	134	4	A ₁	galNAc	
B ₄	143	4	T _n	galNAc	
Vigna radiata	160	4	-	α-gal	
Viscum album	115	4(αβ)	-	β-gal	
Wisteria floribunda	68	2	_	galNAc	

^a Concentration-dependent molecular weight

^b Non-agglutinating and mitogenic

[°] Mitogenic for neuraminidase-treated lymphocytes

References

 Rueben, L., et al., Activities of lectins and their immobilized derivatives in detergent solutions. Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins. Biochemistry, **16**, 1787-1794 (1977).

IRB/MWM/JRC/NSB/SAG 11/02

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.