

Product Information

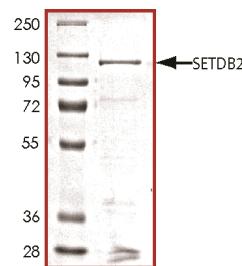
SETDB2, GST-tagged, human recombinant, expressed in *Sf9* cells

Catalog Number **SRP5261**

Storage Temperature –70 °C

Synonyms: CLLD8, CLLL8

Product Description


SETDB2 is a histone H3 methyltransferase that modulates gene expression epigenetically through histone H3 methylation. Methylation of histone H3 at lys⁹ (H3K9) by SETDB2 has emerged as an important player in the formation of heterochromatin, chromatin condensation, and transcriptional repression. SETDB2 is recruited to heterochromatin regions and contributes *in vivo* to the deposition of trimethyl marks. Depletion of SETDB2 coincides with a loss of CENP proteins and delayed mitosis, suggesting SETDB2 participates in chromosome condensation and segregation.¹ Using positional cloning approach, SETDB2 has been cloned from a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma.²

Recombinant full-length human SETDB2 was expressed by baculovirus in *Sf9* insect cells using an N-terminal GST-tag. The SETDB2 gene accession number is BC047434. It is supplied in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~120 kDa

The enzymatic activity of this product has not been determined.

Figure 1.
SDS-PAGE Gel of Typical Lot:
≥70% (SDS-PAGE, densitometry)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at –70 °C is recommended. After opening, aliquot into smaller quantities and store at –70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

References

1. Falandry, C. et al., CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. *J. Biol. Chem.*, **285**(26), 20234-41 (2010).
2. Zhang, Y. et al., Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. *Nature Genet.*, **34**, 181-186, (2003).

RC,MAM 10/12-1