

Product Information

**RIPK5, active, GST tagged, human
PRECISIO® Kinase
recombinant, expressed in Sf9 cells**

Catalog Number **SRP5083**

Storage Temperature -70°C

Synonyms: DSTYK, DustyPK, HDCMD38P, KIAA0472, RIP5

Product Description

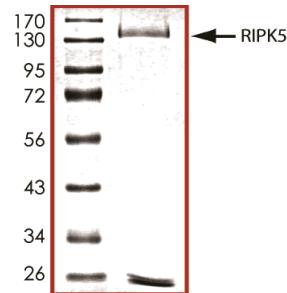
RIPK5 is a dual specificity serine/threonine and tyrosine protein kinase that is a member of the RIPK family. RIPK5 is widely expressed in vertebrates with broad distribution in the central nervous system, and deregulated in certain human cancers.¹ RIPK5 has been shown to function as a regulator of cell death. Overexpression of RIPK5 leads to cell death as evidenced by DNA fragmentation.² RIPK5 induces both caspase-dependent and caspase-independent cell death, and N- and C-terminal RIPK5 deletion mutants retained the ability to induce cell death.

Recombinant, full-length, human RIPK5 was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_015375. Recombinant protein stored in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, and 25% glycerol.

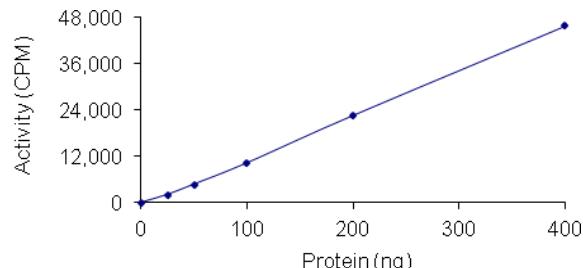
Molecular mass: ~ 140 kDa

Purity: 70–95% (SDS-PAGE, see Figure 1)

Specific Activity: 5–7 nmole/min/mg (see Figure 2)


Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.


Storage/Stability

The product ships on dry ice and storage at -70°C is recommended. After opening, aliquot into smaller quantities and store at -70°C . Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Typical Lot
70–95% (densitometry)

Figure 2.
Specific Activity of Typical Lot
5–7 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/ μl BSA.

Kinase Solution – Dilute the active RIPK5 (0.1 µg/µl) with Kinase Dilution Buffer to the desired concentration.

Note: The specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active RIPK5 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 µl aliquots at –20 °C.

γ-³³P-ATP Assay Cocktail (250 µM) – Combine 5.75 ml of Kinase Assay Buffer, 150 µl of 10 mM ATP Stock Solution, 100 µl of γ-³³P-ATP (1 mCi/100 µl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the protein substrate in distilled water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³³P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

1. Thaw the active RIPK5, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ-³³P-ATP Assay Cocktail may be thawed at room temperature.
2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 µl:
10 µl of Kinase Solution
5 µl of Substrate Solution
5 µl of cold water (4 °C)
3. Set up a blank control as outlined in step 2, substituting 5 µl of cold water (4 °C) for the Substrate Solution.
4. Initiate each reaction with the addition of 5 µl of the γ-³³P-ATP Assay Cocktail, bringing the final reaction volume to 25 µl. Incubate the mixture in a water bath at 30 °C for 15 minutes.
5. After the 15 minute incubation, stop the reaction by spotting 20 µl of the reaction mixture onto an individually pre-cut strip of phosphocellulose P81 paper.

6. Air dry the pre-cut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
7. Set up a radioactive control to measure the total γ-³³P-ATP counts introduced into the reaction. Spot 5 µl of the γ-³³P-ATP Assay Cocktail on a pre-cut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

$$SR = \frac{\text{cpm of } 5 \mu\text{l of } \gamma^{33}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7)

nmole – 1.25 nmole (5 µl of 250 µM ATP Assay Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

$$\text{nmole/min/mg} = \frac{\Delta \text{cpm} \times (25/20)}{SR \times E \times T}$$

SR = specific radioactivity of the ATP (cpm/nmole ATP)

Δcpm = cpm of the sample – cpm of the blank (step 3)

25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

1. Peng, J. et al., Dusty protein kinases: primary structure, gene evolution, tissue specific expression and unique features of the catalytic domain. *Biochim. Biophys. Acta*, **1759**, 562-572 (2006).
2. Zha, J. et al., RIP5 is a RIP-homologous inducer of cell death. *Biochem. Biophys. Res. Commun.*, **319**, 298-303 (2004).

PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC.

TD,MAM 11/11-1