

Product Information

SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of CHITOSANASE Product No. C 0794

PRINCIPLE:

CONDITIONS: T = 37°C, pH = 5.5, A_{405nm}, Light path = 1 cm

METHOD: Spectrophotometric Stop Rate Determination

REAGENTS:

- A. 1000 mM Acetic Acid Solution
(Prepare 25 ml in deionized water using Acetic Acid, Aldrich Prod. No. 32,009-9.)
- B. 55 mM Sodium Acetate Buffer, pH 5.5 at 37°C
(Prepare 100 ml in deionized water using Sodium Acetate Trihydrate, Sigma Prod. No. S 8625. Adjust pH to 5.5 at 37°C using 1 N NaOH.)
- C. 0.1% (w/v) Chitosan Substrate Solution with 150 mM Acetate Buffer, pH 5.5 at 37°C (Chitosan).
(Dissolve 50 mg of Chitosan, Sigma Prod. No. C 3646, in 5 ml of Reagent A. Mix solution until completely dissolved (1 to 3 hours). Once dissolved, dilute the solution to 50 ml with Reagent B. Adjust pH of solution to 5.5 at 37°C using 1 N NaOH.)
- D. 500 mM Sodium Hydroxide Solution
(Prepare 100 ml in deionized water using Sodium Hydroxide, Sigma Stock No. 930-65.)
- E. 16.4 mM p-Hydroxy-Benzoic Hydrazide in 500 mM Sodium Hydroxide Color Reagent (PAHBAH)
(Dissolve 250 mg of p-Hydroxy-Benzoic Hydrazide, Sigma Prod. No. H9882, with 100 ml of Reagent D. Solution is stable for 2 hours.)
- F. 1.5 mM D(+)-Glucosamine Standard Solution (Std. Soln.)
(Prepare 100 ml in deionized water using D(+)-Glucosamine, Sigma Prod. No. G 4875.)
- G. 50 mM Sodium Acetate Buffer, pH 5.5 at 37°C
(Dilute 50 ml of Reagent B to 55 ml with deionized water. Adjust to pH 5.5 at 37°C.)
- H. Chitosanase Enzyme Solution
(Immediately before use, prepare a solution containing 0.4 to 2.0 units/ml of Chitosanase in cold Reagent G.)

**Enzymatic Assay of CHITOSANASE
Product No. C 0794**

PROCEDURE:

Pipette (in milliliters) the following reagents into microfuge tubes:

	<u>Test</u>	<u>Blank</u>
Reagent C (Chitosan)	0.975	0.975

Equilibrate sample solution to 37°C, place blank solution in an ice bath. Then add:

Reagent H (Enzyme Soln)	0.025	-----
-------------------------	-------	-------

Immediately mix by inversion and incubate sample solution at 37°C for exactly 10 minutes. Stop the reaction by removing a 0.4 ml aliquot of test solution to a microfuge tube containing 0.8 ml of Reagent E (PAHBAH). Then add to blank solution in an ice bath:

Reagent H (Enzyme Soln)	-----	0.025
-------------------------	-------	-------

Immediately stop the reaction by removing a 0.4 ml aliquot of test solution to a microfuge tube containing 0.8 ml of Reagent E (PAHBAH).

Place all tubes in a boiling water bath for exactly 5 minutes. Remove the tubes and place in an ice bath to cool to room temperature. Centrifuge all tubes in a microcentrifuge for 5 minutes. Remove the supernatants and record the A_{405nm} for the Sample and Blank.

Standard Curve:

A standard curve is made by pipetting (in milliliters) the following reagents into microcentrifuge tubes:

	<u>Std 1</u>	<u>Std 2</u>	<u>Std 3</u>	<u>Std 4</u>	<u>Std 5</u>	<u>Blank</u>
Reagent F (Std Soln)	0.025	0.050	0.100	0.150	0.200	-----
Milli-q Water	0.375	0.350	0.300	0.250	0.200	0.400
Reagent E (PAHBAH)	0.800	0.800	0.800	0.800	0.800	0.800

Cap and place all tubes in a boiling water bath for exactly 5 minutes. Remove the tubes and place in an ice bath to cool to room temperature. Centrifuge all tube in a microcentrifuge for 5 minutes. Remove the supernatants and record the A_{450nm} for the Standards ad Blank.

CALCULATIONS:

$$\Delta A_{450nm} \text{ Standard} = A_{450nm} \text{ Std} - A_{450nm} \text{ Std Blank}$$

Plot the ΔA_{450nm} Standards versus $\mu\text{moles of D(+)}\text{Glucosamine}$.

Enzymatic Assay of CHITOSANASE
Product No. C 0794

CALCULATIONS: continued

$$\Delta A_{450\text{nm}} \text{ Sample} = A_{450\text{nm}} \text{ Sample} - A_{450\text{nm}} \text{ Sample Blank}$$

Determine the μ moles of D(+)Glucosamine equivalents liberated using the Standard Curve.

$$\text{Units/ml enzyme} = \frac{(\mu\text{moles of D}(+)\text{Glucosamine equivalents})(1)(df)}{(0.025)(10)(0.4)}$$

1 = Total volume (in milliliters) of assay

df = Dilution Factor

0.025 = Volume of enzyme (in milliliters) used in assay

10 = Time of assay as per the Unit Definition

0.40 = Volume (in milliliters) used in color development

$$\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

$$\text{Units/mg protein} = \frac{\text{units/ml protein}}{\text{mg solid/ml protein}}$$

UNIT DEFINITION:

One unit will liberate 1.0 micromole of reducing sugars (D-Glucosamine equivalents) from chitosan per minute at pH 5.5 at 37 °C.

FINAL ASSAY CONCENTRATION:

In a 1.00 ml reaction mix, the final concentrations are 147.5 mM sodium acetate, 0.1% (2/v) chitosan, and 0.01-0.05 units chitosanase.

NOTE:

1. This assay is based on the cited references.
2. Where Sigma Product Number or Stock Numbers are specified, equivalent Reagents may be substituted.

Sigma Warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information.