Sigma-Aldrich.

Technical Bulletin

Neuraminidase Assay Kit

Catalogue number MAK121

Product Description

Neuraminidase, also known as Sialidase, is an enzyme that hydrolyzes terminal sialic acid residues on polysaccharide chains. It is predominantly expressed in microorganisms such as bacteria and viruses. Cleavage of sialic acid residues by neuraminidase is believed to play several roles in infection by influenza viruses. It is thought to assist in the penetration of mucosal linings, the invasion of target cells, the elution of progeny viruses from infected cells, and the prevention of self-aggregation. Thus, neuraminidase is an important target for influenza drug development and simple, direct, and automation-ready procedures for measuring neuraminidase activity find wide applications in research and drug discovery.

The Neuraminidase Assay Kit is suitable for the measurement of neuraminidase activity in biological samples and for the screening of neuraminidase inhibitors. In this assay, neuraminidase activity is determined by an enzymatic assay in which sialic acid released by neuraminidase results in a colorimetric (570 nm)/fluorometric ($\lambda_{ex} = 530/\lambda_{em} = 585$ nm) product directly proportional to neuraminidase activity in the sample. The linear detection range at 37 °C is 0.1–10 units/L for colorimetric assays and 0.01–2 units/L for fluorometric assays.

1

Components

Assay Buffer Catalogue Number MAK121A	6 mL
Dye Reagent Catalogue Number MAK121B	60 µL
Substrate Catalogue Number MAK121C	6 mL
Enzyme Catalogue Number MAK121D	120 µL
Cofactors Catalogue Number MAK121E	120 µL
Standard, 10 mM Catalogue Number MAK121F	500 μL

Reagents and Equipment Required but Not Provided.

- 96 well flat-bottom plate It is recommended to use black plates with clear bottoms for fluorescence assays and clear plates for colorimetric assays.
- Fluorescence or spectrophotometric multiwell plate reader

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The kit is shipped on dry ice and storage at -20 °C, protected from light, is recommended.

Preparation Instructions

Briefly centrifuge vials before opening. Use ultrapure water for the preparation of reagents. Equilibrate all components to the desired reaction temperature (37 °C).

Procedure

Standards for Colorimetric Detection

Add 20 μ L of the 10 mM Standard to 480 μ L of water to prepare a 400 μ M Standard Working Solution. Add 0, 15, 30, and 50 μ L of the 400 μ M Standard Working Solution into tubes. Add water to each tube to bring the volume to 50 μ L, generating 0 (blank), 120, 240, and 400 μ M Standards. Transfer 20 μ L of Standards into separate wells of 96 well plate.

Standards for Fluorometric Detection

Prepare Standards as described for the Colorimetric Detection. Further dilute each Standard 5-fold with water, generating 0 (blank), 24, 48, and 80 μ M Standards. Transfer 20 μ L of Standards into separate wells of 96 well plate.

Sample Preparation

Aliquot 20 µL of each Sample into two separate wells of a 96 well plate. One well will be used for the Sample activity and one for the Sample blank.

Notes: Thiol (SH) group containing reagents (For example- Mercaptoethanol, DTT) may interfere with this assay and should be avoided in Sample preparation.

For unknown Samples, it is suggested to test several Sample dilutions to ensure the readings are within the linear range of the Standard curve.

Assay Reaction

1. Set up the Master Reaction Mix according to the scheme in Table 1. 80 μ L of the Master Reaction Mix is required for each Sample, blank, and Standard reaction (well).

Table 1.

Reaction Mixes

Reagent	Sample and Standards	Sample blank
Assay Buffer	30 μL	85 µL
Substrate	55 μL	_
Cofactors	1 μL	1 μL
Enzyme	1 μL	1 μL
Dye Reagent	0.5 μL	0.5 μL

- Add 80 μL of the appropriate reaction mix to each well. Mix well using a horizontal shaker or by pipetting and incubate the reaction at 37 °C.
 Protect the plate from light during the incubation.
- 3. Measure the absorbance of the Samples and Standards at 20 minutes at 570 nm for colorimetric assay or $\lambda_{ex} = 530/\lambda_{em} = 585$ nm for fluorometric assay to determine the M_{20 min}.
- 4. Continue to incubate the plate at 37 °C for an additional 30 minutes. Measure the absorbance of the Samples and Standards at 570 nm for colorimetric assay or $\lambda_{ex} = 530/\lambda_{em} = 585$ nm for fluorometric assay to determine the $M_{50~min}$.

Results

A new standard curve must be set up each time the assay is run.

Plot the absorbance or fluorescence intensity measured at 50 minutes for each standard against the standard concentrations. Determine the slope using linear regression fitting.

Subtract the $M_{20~min}$ value from the $M_{50~min}$ value for the sample, sample blank, and water (standard blank) reactions to determine the change in measurement value (ΔM).

Calculation

The neuraminidase activity (units/L) of a sample is calculated as follows:

units/L =
$$\Delta M_{sample} - \Delta M_{blank} - \Delta M_{water}$$

Slope $\times T$

where:

 ΔM_{sample} , ΔM_{blank} , ΔM_{water} = The changes in absorbance or fluorescence intensity of the sample, sample blank, and water (standard blank), respectively.

Slope = The slope of the standard curve in μM^{-1}

T = The time of reaction between readings (30 minutes)

Note: If the Sample activity is higher than the 10 units/L for the colorimetric assay or 2 units/L for the fluorometric assay, dilute sample in water and repeat the assay. Multiply result by the dilution factor.

Sigma-Aldrich_®

Troubleshooting Guide

Problem	Possible Cause	Suggested Solution
	Cold assay buffer	Assay Buffer must be at room temperature
	Omission of step in procedure	Refer and follow Technical Bulletin precisely
Access not working	Plate reader at incorrect wavelength	Check filter settings of instrument
Assay not working	Type of 96 well plate used	For fluorescence assays, use black plates with clear bottoms. For colorimetric assays, use clear plates
Samples with erratic readings	Samples prepared in different buffer	Use the Assay Buffer provided or refer to Technical Bulletin for instructions
	Cell/Tissue culture samples were incompletely homogenized	Repeat the sample homogenization, increasing the length and extent of homogenization step.
	Samples used after multiple freeze-thaw cycles	Aliquot and freeze samples if needed to use multiple times
	Presence of interfering substance in the sample	If possible, dilute sample further
	Use of old or inappropriately stored samples	Use fresh samples and store correctly until use
	Improperly thawed components	Thaw all components completely and mix gently before use
	Use of expired kit or improperly stored	Check the expiration date and store the
Lower/higher readings in samples and standards	reagents	components appropriately
	Allowing the reagents to sit for extended	Prepare fresh Master Reaction Mix before
	times on ice	each use
	Incorrect incubation times or	Refer to Technical Bulletin and verify
	temperatures	correct incubation times and temperatures
Non-linear standard curve	Incorrect volumes used	Use calibrated pipettes and aliquot correctly
	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix
	Pipetting errors in preparation of standards	Avoid pipetting small volumes
	Pipetting errors in the Reaction Mix	Prepare a Master Reaction Mix whenever possible
	Air bubbles formed in well	Pipette gently against the wall of the plate well
	Standard stock is at incorrect	Refer to the standard dilution instructions in
	concentration	the Technical Bulletin
	Calculation errors	Recheck calculations after referring to Technical Bulletin
	Substituting reagents from older kits/lots	Use fresh components from the same kit
Unanticipated results	Samples measured at incorrect wavelength	Check the equipment and filter settings
	Samples contain interfering substances	If possible, dilute sample further
	Sample readings above/below the linear range	Concentrate or dilute samples so readings are in the linear range

Sigma-Aldrich_®

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Standard Warranty

The applicable warranty for the products listed in this publication may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

