



# Ultrapure water tailored for trace elemental analyses

A wide array of laboratories around the world, ranging from semiconductor, energy and mining industries, to environmental, food safety and life science laboratories, are relying on trace elemental analyses. The sensitivity of the instruments used for these analyses is such that any contamination present in reagents might interfere with the analytical results. Specifically, water is used at many stages of the analytical process, and any contamination stemming from water may be carried throughout the analysis and compromise the results.

# Milli-Q<sup>®</sup> IQ Element water purification and dispensing unit

The Milli-Q<sup>®</sup> IQ Element unit is specifically designed to answer the most stringent requirements of trace elemental analyses. When connected to a Milli-Q<sup>®</sup> IQ 7 series water purification system, the unit ensures that the ultrapure water delivered is free of ions, metals and particles.

The components of the Milli-Q<sup>®</sup> IQ Element unit have been carefully selected to not only remove contaminants, but also to safeguard against potential contaminations:

- The cartridge contains a combination of Jetpore<sup>®</sup> mixed-bed ion-exchange resin and innovative IQnano<sup>™</sup> ion-exchange media to achieve ion removal down to trace levels
- The high-purity 0.1 µm Optimizer LW<sup>™</sup> final filter ensures that no particles are released in the water
- The footswitch and the dispenser help prevent any risk of water contamination from the environment





### Water quality

To assess the performance of the combination of the Milli-Q<sup>®</sup> IQ 7 series water purification systems with a Milli-Q<sup>®</sup> IQ Element unit, analyses by inductively coupled plasma mass spectrometry (ICP-MS) were performed in **two independent laboratories** (**Tables 1 and 2**). In both laboratories, a Milli-Q<sup>®</sup> IQ Element unit was connected to a Milli-Q<sup>®</sup> IQ 7005 system in a clean room, in order to minimize contamination due to the laboratory environment. The ultrapure water was collected after discarding at least 10 L of water, and the sampling bottles were rinsed several times with the water to be tested.

The results demonstrate that this water contains only extremely low levels of the elements tested and fulfills the most stringent purity requirements of modern ICP-MS instruments.

**Table 1.** ICP-MS analyses performed with high purity water obtained from a Milli-Q<sup>®</sup> IQ Element connected to a Milli-Q<sup>®</sup> IQ 7005 water purification system. Data obtained courtesy of **Agilent Technologies**, Tokyo, Japan. © *Agilent Technologies, Inc. Reproduced with Permission, Courtesy of Agilent Technologies, Inc.* 

| Isotope | Element          | BEC<br>(ng/L) | <b>Sample</b><br>(ng/L) | <b>DL</b><br>(ng/L) | Cell Mode                |
|---------|------------------|---------------|-------------------------|---------------------|--------------------------|
| 7       | Lithium (Li)     | 0.04          | < DL                    | 0.04                | [ Cool NH <sub>3</sub> ] |
| 11      | Boron (B)        | 1.55          | 1.15                    | 0.27                | No gas                   |
| 23      | Sodium (Na)      | 0.56          | 0.68                    | 0.11                | [ Cool NH <sub>3</sub> ] |
| 24      | Magnesium (Mg)   | 0.03          | 0.01                    | 0.01                | [ Cool NH <sub>3</sub> ] |
| 27      | Aluminium (Al)   | 0.08          | 0.07                    | 0.04                | [ Cool NH <sub>3</sub> ] |
| 28      | Silicon (Si)*    | 215.16        | 198.65                  | 4.98                | [H <sub>2</sub> ]        |
| 39      | Potassium (K)    | 0.60          | 0.54                    | 0.16                | [ Cool NH <sub>3</sub> ] |
| 40      | Calcium (Ca)     | 0.50          | < DL                    | 0.57                | [ Cool NH <sub>3</sub> ] |
| 47      | Titanium (Ti)    | 0.60          | 0.61                    | 0.51                | [ O <sub>2</sub> ]       |
| 51      | Vanadium (V)     | 0.03          | 0.03                    | 0.01                | [NH <sub>3</sub> ]       |
| 52      | Chromium (Cr)    | 0.10          | 0.08                    | 0.02                | [ Cool NH <sub>3</sub> ] |
| 55      | Manganese (Mn)   | 0.01          | 0.01                    | 0.02                | [ Cool NH <sub>3</sub> ] |
| 56      | Iron (Fe)        | 0.66          | < DL                    | 0.50                | [ Cool NH <sub>3</sub> ] |
| 59      | Cobalt (Co)      | 0.00          | < DL                    | 0.01                | [ Cool NH <sub>3</sub> ] |
| 60      | Nickel (Ni)      | 0.03          | < DL                    | 0.16                | [ Cool NH <sub>3</sub> ] |
| 63      | Copper (Cu)      | 0.16          | < DL                    | 0.04                | [ Cool NH <sub>3</sub> ] |
| 66      | Zinc (Zn)        | 0.43          | < DL                    | 0.48                | [ NH <sub>3</sub> warm ] |
| 69      | Gallium (Ga)     | 0.10          | < DL                    | 0.14                | [ Cool NH <sub>3</sub> ] |
| 70      | Germanium (Ge)   | 0.47          | 0.43                    | 0.11                | [H <sub>2</sub> ]        |
| 75      | Arsenic (As)     | 0.03          | 0.06                    | 0.04                | [ O <sub>2</sub> ]       |
| 85      | Rubidium (Rb)    | 0.01          | < DL                    | 0.03                | [ Cool NH <sub>3</sub> ] |
| 88      | Strontium (Sr)   | 0.01          | < DL                    | 0.05                | [ Cool NH <sub>3</sub> ] |
| 90      | Zirconium (Zr)   | 0.04          | < DL                    | 0.09                | [ O <sub>2</sub> ]       |
| 95      | Molybdenium (Mo) | 0.07          | < DL                    | 0.10                | [NH <sub>3</sub> ]       |
| 107     | Silver (Ag)      | 0.50          | 0.55                    | 0.17                | [ Cool NH <sub>3</sub> ] |
| 111     | Cadmium (Cd)     | 0.02          | < DL                    | 0.08                | [NH <sub>3</sub> warm]   |
| 118     | Tin (Sn)         | 0.71          | 0.64                    | 0.60                | [NH <sub>3</sub> ]       |
| 121     | Antimony (Sb)    | 0.00          | < DL                    | 0.02                | [NH <sub>3</sub> ]       |
| 133     | Caesium (Cs)     | 0.00          | 0.01                    | 0.00                | [ Cool NH <sub>3</sub> ] |
| 138     | Barium (Ba)      | 0.04          | < DL                    | 0.05                | [ NH <sub>3</sub> ]      |
| 182     | Tungsten (W)     | 0.01          | < DL                    | 0.07                | [H <sub>2</sub> ]        |
| 208     | Lead (Pb)        | 0.09          | < DL                    | 0.08                | [ NH <sub>3</sub> warm ] |

DL, Detection Limit; BEC, Blank Equivalent Concentration

\*Si is known to be difficult to measure by ICP-MS. When measured by GF-AAS, it was < DL (0.5 ppb).

#### Experimental conditions (Table 1):

Reagents: Nitric acid: TAMAPURE AA-10 (Tama Chemicals Co. Ltd., Kanagawa, Japan) DL and BEC: Obtained with water from Milli-Q<sup>®</sup> IQ Element and standard additions with 0.05% nitric acid. Sample: Average of 6 values (3 samples measured twice each).

| Instrument                    | Agilent 8900 ICP-QQQ                                                                                                         |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Nebulizer                     | MFN100                                                                                                                       |
| Torch                         | Quartz torch (2.5 mm id)                                                                                                     |
| Cones                         | Platinum-tipped sampling, skimmer cones                                                                                      |
| Tuning modes                  | Cool NH <sub>3</sub> / NH <sub>3</sub> / NH <sub>3</sub> (warm) / $O_2$ / no gas / H <sub>2</sub>                            |
| Acquisition mode              | MS/MS                                                                                                                        |
| RF power (W)                  | 630 (Cool $NH_3$ ), 1600 ( $NH_3$ , $NH_3$ warm, $O_2$ , no gas, $H_2$ )                                                     |
| Carrier gas (L/min)           | 0.7                                                                                                                          |
| Make-up gas (L/min)           | 0.7 (Cool NH <sub>3</sub> and NH <sub>3</sub> ), 0.85 (NH <sub>3</sub> warm), 0.7 (O <sub>2</sub> , no gas, H <sub>2</sub> ) |
| Ext 1 (V)                     | -120                                                                                                                         |
| Ext 2 (V)                     | -10.5                                                                                                                        |
| Omega bias (V)                | -80                                                                                                                          |
| Omega lens (V)                | 2.2 (Cool NH <sub>3</sub> ), 7.5 (NH <sub>3</sub> , NH <sub>3</sub> warm, $O_2$ , no gas, H <sub>2</sub> )                   |
| Q1 entrance (V)               | -7.5 (Cool NH <sub>3</sub> ), -6.5 (NH <sub>3</sub> , NH <sub>3</sub> warm, $O_2$ , no gas, H <sub>2</sub> )                 |
| He flow (mL/min)              | 1 (Cool NH <sub>3</sub> , NH <sub>3</sub> , NH <sub>3</sub> warm), 0 (O <sub>2</sub> , no gas, H <sub>2</sub> )              |
| NH <sub>3</sub> flow (mL/min) | 15 (Cool NH <sub>3</sub> , NH <sub>3</sub> , NH <sub>3</sub> warm), 0 (O <sub>2</sub> , no gas, H <sub>2</sub> )             |
| Axial acceleration (V)        | 1.5 (Cool NH <sub>3</sub> , NH <sub>3</sub> , NH <sub>3</sub> warm, O <sub>2</sub> ), 0 (no gas, H <sub>2</sub> )            |
| Energy discrimination (V)     | -5 (Cool NH <sub>3</sub> ), -7 (NH <sub>3</sub> , NH <sub>3</sub> warm, O <sub>2</sub> ), 4 (no gas), 0 (H <sub>2</sub> )    |

**Table 2.** ICP-MS analyses performed with high purity water obtained from a Milli-Q<sup>®</sup> IQ Element connected to a Milli-Q<sup>®</sup> IQ 7005 water purification system. Data obtained courtesy of **UT2A**, Pau, France.

| Isotope | Element           | Sample<br>(ng/L) | <b>DL</b><br>(ng/L) | Cell Mode      |
|---------|-------------------|------------------|---------------------|----------------|
| 9       | Beryllium (Be)    | < DL             | 0.20                | No Gas         |
| 11      | Boron (B)         | < DL             | 0.50                | No Gas         |
| 40      | Calcium (Ca)      | < DL             | 0.29                | H <sub>2</sub> |
| 45      | Scandium (Sc)     | 0.59             | 0.53                | H <sub>2</sub> |
| 70      | Germanium (Ge)    | < DL             | 0.10                | H <sub>2</sub> |
| 71      | Gallium (Ga)      | < DL             | 0.13                | No Gas         |
| 78      | Selenium (Se)     | < DL             | 0.57                | H <sub>2</sub> |
| 88      | Strontium (Sr)    | < DL             | 0.02                | No Gas         |
| 89      | Yttrium (Y)       | < DL             | 0.02                | No Gas         |
| 90      | Zirconium (Zr)    | < DL             | 0.05                | No Gas         |
| 93      | Niobium (Nb)      | < DL             | 0.03                | No Gas         |
| 101     | Ruthenium (Ru)    | 0.42             | 0.20                | No Gas         |
| 103     | Rhodium (Rh)      | < DL             | 0.01                | No Gas         |
| 105     | Palladium (Pd)    | < DL             | 0.34                | No Gas         |
| 107     | Silver (Ag)       | 0.40             | 0.15                | No Gas         |
| 115     | Indium (In)       | < DL             | 0.01                | No Gas         |
| 118     | Tin (Sn)          | < DL             | 0.15                | No Gas         |
| 126     | Tellerium (Te)    | 0.08             | 0.07                | No Gas         |
| 139     | Lanthanium (La)   | < DL             | 0.02                | No Gas         |
| 140     | Cerium (Ce)       | < DL             | 0.03                | No Gas         |
| 141     | Praseodymium (Pr) | < DL             | 0.02                | No Gas         |
| 146     | Neodenyum (Nd)    | < DL             | 0.08                | No Gas         |
| 147     | Samarium (Sm)     | < DL             | 0.13                | No Gas         |
| 153     | Europium (Eu)     | < DL             | 0.04                | No Gas         |
| 157     | Gadolinium (Gd)   | < DL             | 0.13                | No Gas         |
| 159     | Terbium (Tb)      | < DL             | 0.02                | No Gas         |
| 163     | Dysprosium (Dy)   | < DL             | 0.07                | No Gas         |
| 165     | Holmium (Ho)      | < DL             | 0.02                | No Gas         |
| 166     | Erbium (Er)       | < DL             | 0.11                | No Gas         |
|         |                   |                  |                     |                |

| Isotope | Element        | Sample<br>(ng/L) | <b>DL</b><br>(ng/L) | Cell Mode |
|---------|----------------|------------------|---------------------|-----------|
| 169     | Thulium (Tm)   | < DL             | 0.03                | No Gas    |
| 172     | Ytterbium (Yb) | < DL             | 0.09                | No Gas    |
| 175     | Lutetium (Lu)  | < DL             | 0.02                | No Gas    |
| 178     | Hafnium (Hf)   | < DL             | 0.11                | No Gas    |
| 181     | Tantalum (Ta)  | < DL             | 0.03                | No Gas    |
| 185     | Rhenium (Re)   | < DL             | 0.09                | No Gas    |
| 189     | Osmium (Os)    | < DL             | 0.14                | No Gas    |
| 193     | Iridium (Ir)   | < DL             | 0.05                | No Gas    |
| 195     | Platinum (Pt)  | 0.18             | 0.16                | No Gas    |
| 197     | Gold (Au)      | < DL             | 0.43                | No Gas    |
| 202     | Mercury (Hg)   | 5.1              | 1.52                | No Gas    |
| 205     | Thallium (TI)  | < DL             | 0.05                | No Gas    |
| 209     | Bismuth (Bi)   | < DL             | 0.06                | No Gas    |
| 232     | Thorium (Th)   | < DL             | 0.04                | No Gas    |
| 238     | Uranium (U)    | < DL             | 0.04                | No Gas    |

DL, Detection Limit

#### Experimental conditions (Table 2):

Reagents: Reagents were of Suprapur<sup>®</sup> analytical grade. Nitric acid: Ultrex<sup>®</sup> (J.T. Baker<sup>®</sup>, Avantor) Sample: Average concentration in water from Milli-Q<sup>®</sup> IQ Element (10 measurements)

| Instrument       | Agilent AT 7900 ICP-MS                                              |
|------------------|---------------------------------------------------------------------|
| Nebulizer        | PFA microflow nebulizer (200 $\mu$ L/min) with PFA tubing and probe |
| Sample injection | Autoaspiration mode (without peristaltic pump)                      |
| Spray chamber    | PFA Scott chamber                                                   |
| Torch / Injector | Quartz torch with removable injector (sapphire 2.5 mm)              |
| Cones            | Ni S-lens skimmer cone and Ni sampler cone                          |
| Lens             | Lens-S type                                                         |
| Carrier gas      | 0.75 L/min                                                          |
| Make-up gas      | 0.50 L/min                                                          |
| Plasma gas       | 15 L/min                                                            |
| Plasma power     | 1500 W                                                              |
| Cell modes       | No gas; H <sub>2</sub> : Hydrogen reaction (5 mL/min)               |
| Dwell time       | 1 sec                                                               |
| Sweeps           | 100                                                                 |
| Replicate        | 5                                                                   |

## Conclusion

Coupling a Milli-Q<sup>®</sup> IQ Element unit to a Milli-Q<sup>®</sup> IQ 7 series water purification system delivering ultrapure water produces ultrapure water suitable for trace and ultra-trace elemental analyses. This high-quality ultrapure water can be used for critical cleaning, for blanks, to dilute samples, or to prepare standard solutions for even the most sensitive ICP-MS or GF-AAS analyses.

