

Mesenchymal Stem Cell Products

Vi Chu, Ph.D., Millipore Corporation, Temecula, CA

ESGRO® Mesenchymal stem cells, also known as marrow stromal cells¹, are defined as a self-renewing population of adherent, bone-marrow-derived multipotent progenitor cells with the capacity to differentiate into several mesenchymal cell lineages. In defined *in vitro* assays, mesenchymal stem cells have been shown to readily differentiate into lineage-specific cells that form bone, cartilage, fat, tendon and muscle tissues¹,². Mesenchymal stem cells also provide support and maintenance for the other major stem cell population in the bone marrow, the hematopoietic stem cells².

Mesenchymal stem cells have historically been isolated based on the ability of these cells to form adherent cell layers in culture and the concomitant lack of adherence of other cells in the bone marrow stroma such as hematopoietic stem cells, adipocytes and macrophages^{1,3}. While this procedure results in enriched populations of mesenchymal stem cells, the resulting bone marrow derived cell populations are nonetheless, heterogeneous – comprised not only of mesenchymal stem cells, but also of committed lineage-restricted progenitors^{1,3}.

We have developed stem cell reagents that aid in the accurate identification and characterization of the stem cell population and that allow for the preferential differentiation of mesenchymal stem cells into adipocytes and osteocytes.

The Rat Mesenchymal Stem Cell Kit provides ready-touse primary mesenchymal stem cells isolated from the bone marrow of adult Fisher 344 rats along with a panel of positive and negative selection markers for characterization of the

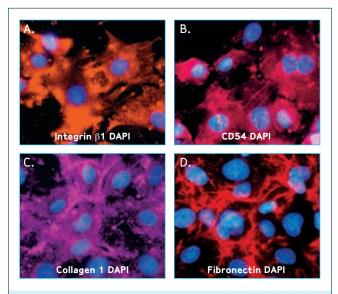


Figure 1. Rat Mesenchymal Stem Cells express mesenchymal stem cell markers: integrin β 1 (A), CD54 (B), collagen type I (C), and fibronectin (D). Nuclei of the cells were visualized with DAPI (blue).

mesenchymal stem cell population (Figure 1). Positive cell markers include antibodies directed against integrin b1 (Figure 1A) and CD54 (Figure 1B), two cell-surface molecules that are present on mesenchymal stem cells^{2,4}. Negative cell markers include antibodies directed against two specific hematopoietic cell surface markers that are not expressed by mesenchymal stem cells: CD14, present on leukocytes and CD45, present on monocytes and macrophages^{2,3,4}. Mouse and rabbit immunoglobulins for assessment of background staining are

also included. Researchers can purchase the cryopreserved Rat Mesenchymal Stem Cells alone or in combination with the Mesenchymal Stem Cell Kit. All of the antibodies provided in the Mesenchymal Stem Cell Kit (Figure 1) have been tested and optimized for use in immunocytochemistry on rat mesenchymal stem cells. We recommend that the Rat Mesenchymal Stem Cells be used in conjunction with our differentiation assays to demonstrate multipot-entiality of the starting cell population (Figure 2). The differentiation assays available are the Mesenchymal Stem Cell Adipogenesis Kit (Figure 2A, B) and Mesenchymal Stem Cell Osteogenesis Kit (Figure 2C, D).

References

- 1. Prockop, D. J. (1997). Science 276: 71-74.
- Pittenger, M. F. and Marshak, D. R. in Stem Cell Biology (Eds Marshak, D. R., Gardner, R. L., & Gottlieb, D.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).
- 3. Alhadlag, A. and Mao, J. J. (2004). Stem Cells and Development 13: 436-448.
- Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R. (1999). Science 284: 143-147.
- 5. Salasznyk, R. M., Williams W. A., Boskey, A., Batorsky, A., and Plopper, G. E. (2004). J. Biomed. Biotechnol. 2004 (1): 24-34.

Description	Quantity	Catalogue No.
Rat Mesenchymal Stem Cell Kit	1 Kit*	SCR026
Cryopreserved Rat Mesenchymal Stem Cells	1 Vial*	SCR027
Mesenchymal Stem Cell Characterization Kit	1 Kit	SCR018
Mesenchymal Stem Cell Adipogenesis Kit	1 Kit	SCR020
Mesenchymal Stem Cell Osteogenesis Kit	1 Kit	SCR02
LT2 Human Immortalized Pancreatic Mesenchymal Cell Line	5 x 10 ⁵ cells	SCR013
VIT1 Human Primary Pancreatic Mesenchymal Cell Line	5 x 10 ⁵ cells	SCR014

^{*}We guarantee > 1 million viable cells upon thawing

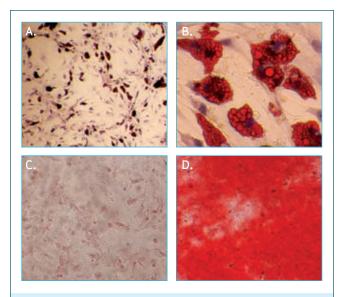


Figure 2. Rat Mesenchymal Stem Cells are multipotent. Rat mesenchymal stem cells were differentiated in adipogenic (A, B) and osteogenic (D) differentiation medium. Using the Mesenchymal Stem Cell Adipogenesis Kit, rat mesenchymal stem cells differentiated after 21 days to mature adipocytes as indicated by the accumulation of lipid vacuoles that stain with Oil Red O (A, 10X magnification; B, 40X magnification). Cell nuclei (purple) were stained with Hematoxylin Solution. Control rat skin fibroblast cells did not contain any lipid droplets (data not shown). Using the Mesenchymal Stem Cell Osteogenesis Kit, rat mesenchymal stem cells readily differentiated to an osteocyte lineage as indicated by Alizarin Red S (ARS) staining (D). ARS staining was not observed in control rat skin fibroblasts that were treated in the same manner (C). Alizarin red S staining demonstrates mineral deposition throughout the culture.

www.millipore.com/offices

ADVANCING LIFE SCIENCE TOGETHER™ Research. Development. Production.

Millipore, Upstate, Chemicon, and ESGRO are registered trademarks of Millipore Corporation. The M mark and Advancing Life Science Together are trademarks of Millipore Corporation.

Lit. No. AN1074EN00 Printed in U.S.A. 08/08 BS-GEN-08-00823 D

© 2008 Millipore Corporation, Billerica, MA 01821 U.S.A. All rights reserved