

Product Information

CF™790, Succinimidyl Ester

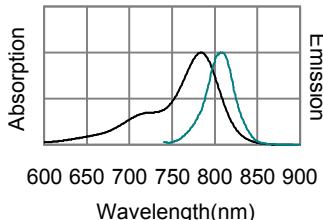
Catalog Number **SCJ4600061**

Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description

CF™790, succinimidyl ester (CF790 SE) is used for labeling proteins or other biomolecules having an amine group. The succinimidyl ester group of the dye reacts with an amine group to form a stable amide linkage.


Near-IR CF dyes are a group of fluorescent dyes with absorption and emission wavelengths between 650–800 nm. Near-IR CF dyes are significantly brighter and more stable than any other commercial dye of similar wavelengths. Near-IR CF dyes offer important advantages over traditional visible light dyes. Because cellular or tissue components produce minimal autofluorescence in the near-IR region, near-IR dyes have the potential to offer highly specific and sensitive detection in complex biological systems. Also, because light with wavelength in the near-IR region has strong tissue penetration, near-IR dyes are ideal for *in vivo* fluorescence imaging, an emerging field that has advanced rapidly in recent years. Furthermore, near-IR dyes are also excellent dyes for in- or on-cell and membrane-based Western assays.

CF790 dye properties:

Abs/Em Maxima: 784/806 nm (See Figure 1)
Extinction coefficient: 210,000
Molecular mass of free acid: ~3267
 A_{280}/A_{max} or CF (correction factor for estimating degree of protein labeling): 0.07
Direct replacement for: Alexa Fluor® 790

Figure 1.

Absorption and emission spectra of CF790 conjugated to goat anti-mouse IgG in PBS.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

Store the dye desiccated at –20 °C. When stored as directed, the dye should remain active for at least 6 months.

Procedure

This procedure is a guideline for labeling IgG antibodies in bicarbonate buffer. Procedures for labeling other proteins can be modified accordingly. The procedure is for labeling 5 mg of an IgG antibody in bicarbonate buffer. The procedure may be scaled up or down for any amount of protein as long as the ratios of the reagents are maintained. One μ mole of CF790 SE (dark blue solid) is provided, which is sufficient for labeling 8–12 mg of IgG.

Reagents Required but Not Provided

- IgG: The IgG should be free of any amine-containing compounds, such as amino acids or Tris buffer, as these chemicals will also react with the dye. If these chemicals are present, the antibody should be dialyzed using PBS buffer, pH ~7.4. Presence of azide does not affect the labeling reaction.
- Sodium bicarbonate (NaHCO_3)
- Sephadex® G-75
- PBS buffer, pH ~7.4
- Sodium azide (NaN_3)
- BSA

Antibody Preparation

Dissolve 5 mg of the antibody in ~2 mL of 0.1 M sodium bicarbonate buffer, pH ~8.3, resulting in the Labeling Solution. If the IgG has been previously dissolved in phosphate buffer, such as PBS buffer (must be free of any amine-containing chemicals), the Labeling Solution can be conveniently prepared by adding an appropriate volume of 1 M sodium bicarbonate solution, pH 8.3, to the IgG solution and adjusting the bicarbonate concentration to ~0.1 M. If the IgG solution is too dilute, it may be concentrated by ultrafiltration.

The labeling efficiency of the dye reaction decreases with decreasing protein concentration. A labeling efficiency of 20–30% can be expected with a protein concentration as low as ~1 mg/mL. At ~2.5 mg/mL protein concentration, the labeling efficiency is generally ~35%. Even higher labeling efficiency is possible with protein concentration >5 mg/mL. Because of variations in buffer and protein purity, a more accurate labeling efficiency must be determined empirically.

Dye Stock Solution Preparation

Let a vial of CF790 SE (1 μ mole) warm up to room temperature. Add 0.1 mL of anhydrous DMSO to the vial, forming a 10 mM Dye Stock Solution. Vortex the vial briefly to fully dissolve the dye, followed by brief centrifugation to collect the solution at the bottom of the vial. If the labeling reaction is to be carried out with a much smaller amount of protein, the dye stock solution may need to be more dilute for accurate pipetting.

Notes: Any remaining 10 mM Dye Stock Solution may be stored at –20 °C for later use. If anhydrous DMSO is used for making the solution, the dye should remain active for at least one month.

The dye stock solution may also be prepared in water. However, because the dye will hydrolyze slowly, the stock solution in water should only be prepared immediately before the conjugation reaction and cannot be stored for later use.

Labeling Reaction

1. While stirring or vortexing the Labeling Solution, add 30–50 μ L of the 10 mM Dye Stock Solution in a dropwise fashion. The 30–50 μ L volume corresponds to a dye:protein molar ratio of 9:1 to 15:1. As stated earlier, the dye:protein ratio may need to be higher for a more dilute protein solution because of the lower labeling efficiency for more dilute reactants. For IgG antibodies labeled with CF790, the optimal degree of labeling (DOL, number of dye molecules conjugated to each protein molecule) is from 3–5, although a DOL slightly below or above this range will also produce acceptable results.
2. Continue to stir or rock the Reaction Solution at room temperature for 1 hour.

Note: While the labeling reaction is underway, prepare a Sephadex G-75 column for reaction clean-up.

Reaction Clean-up - Separation of the labeled protein from the free dye

1. Prepare a Sephadex G-75 column (10 mm \times 300 mm) equilibrated in PBS buffer, pH ~7.4.
2. Immediately load the Reaction Solution onto the column and elute the column with 1 \times PBS buffer. The first band excluded from the column corresponds to the antibody conjugate.

Notes: For a small scale labeling reaction, an ultrafiltration device may be used to remove the free dye from the conjugate in order to avoid an overly dilute conjugate solution.

Instead of separating the labeled antibody from the free dye immediately after the reaction, one may add 50 μ L of 1 M lysine solution to stop the reaction. In most cases, this step may not be necessary, as any unconjugated dye should have already been fully hydrolyzed by the end of the reaction.

Storage and Handling

For long-term storage and to prevent denaturation and microbial growth, the addition of BSA and sodium azide to the conjugate solution is recommended to final concentrations of 5–10 mg/mL and 0.01–0.03%, respectively. The conjugate solution should be stored at 2–8 °C and protected from light.

Results

Determine the protein concentration

The concentration of the antibody conjugate can be calculated from the formula:

$$[\text{conjugate}] = \{[\text{A}_{280} - (\text{A}_{\text{max}} \times \text{CF})]/1.4\} \times \text{df}$$

(mg/mL)

[\text{conjugate}] (mg/mL) - concentration of the antibody conjugate collected from the column
 df (dilution factor) - the fold of dilution used for spectral measurement (See Note)

A_{280} and A_{max} are the absorbance readings of the conjugate at 280 nm and the absorption maximum (~784 nm for CF790), respectively

CF - the absorbance correction factor (0.07 for CF790)
 1.4 - the extinction coefficient of IgG in mL/mg.

Note: The protein solution eluted from the column may be too concentrated for an accurate absorbance measurement and thus, must be diluted to ~0.1 mg/mL. The fold of dilution (df, dilution factor) necessary can be estimated from the amount of starting antibody (i.e., 5 mg) and the total volume of the protein solution collected from the column.

Calculate the degree of labeling (DOL)

The DOL is calculated according to the formula:

$$\text{DOL} = (\text{A}_{\text{max}} \times \text{Mwt} \times \text{df})/(\varepsilon \times [\text{conjugate}])$$

A_{max} , df (dilution factor), and [\text{conjugate}] are as defined in determination of protein concentration

Mwt - molecular mass of IgG (~150,000)

ε - molar extinction coefficient of CF790 (i.e., 210,000).

For IgG antibodies labeled with CF790, the optimal DOL is 3–5, although a DOL slightly above or below this range will also produce acceptable results

This product is distributed by Sigma-Aldrich Co. under the authorization of Biotium, Inc. This product is covered by one or more US patents and corresponding patent claims outside the US patents or pending applications owned or licensed by Biotium, Inc. including without limitation: 12/334,387; 12/607,915; 12/699,778; 12/850,578; 61/454,484. In consideration of the purchase price paid by the buyer, the buyer is hereby granted a limited, non-exclusive, non-transferable license to use only the purchased amount of the product solely for the buyer's own internal research in a manner consistent with the accompanying product literature. Except as expressly granted herein, the sale of this product does not grant to or convey upon the buyer any license, expressly, by implication or estoppel, under any patent right or other intellectual property right of Biotium, Inc. Buyer shall not resell or transfer this product to any third party, or use the product for any commercial purposes, including without limitation, any diagnostic, therapeutic or prophylactic uses. This product is for research use only. Any other uses, including diagnostic uses, require a separate license from Biotium, Inc. For information on purchasing a license to use this product for purposes other than research, contact Biotium, Inc., 3159 Corporate Place, Hayward, CA 94545, Tel: (510) 265-1027. Fax: (510) 265-1352. Email: btinfo@biotium.com.

CF is a trademark of Biotium.

Alexa Fluor is a registered trademark of Invitrogen.

Sephadex is a registered trademark of GE Healthcare Bio-Sciences AB.

AKN,MAM 11/11-1