

ProductInformation

SIGMA QUALITY CONTROL TEST PROCEDURE Enzymatic Assay of CHOLESTEROL ESTERASE (EC 3.1.1.13)

PRINCIPLE:

Cholesterol + O_2

Cholesterol Oleate + H₂O Cholesterol Esterase > Cholesterol + Oleic Acid

Cholesterol Oxidase

> H₂O₂ + Cholestenone

2H₂O₂ + 4-AAP + Phenol

 $> 4H_2O + Quinoneimine Dye$

Abbreviation: 4-AAP = 4-Aminoantipyrine

CONDITIONS: T = 37° C, pH = 7.0, A_{500nm}, Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 400 mM Potassium Phosphate Buffer, pH 7.0 at 37°C
 (Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 7.0 at 37°C with 1 M KOH.)
- B. 0.9% (w/v) Sodium Chloride Solution (Prepare 25 ml in deionized water using Sodium Chloride, Sigma Prod. No. S-9625.)
- C. 8.6 mM Cholesteryl Oleate Solution (Chol-Oleate) (Prepare 10 ml by first dissolving the Cholesteryl Oleate, Sigma Prod. No. C-9253, in 1 ml of Polyoxyethylene, 9 Lauryl Ether, Sigma Prod. No. P-9641. Stir gently, with heat, until the solution is clear and colorless. Then add 9 ml of hot Reagent B and continue for 5 minutes. Allow the solution to return to ambient temperature prior to use. The solution clears upon cooling.)

Enzymatic Assay of CHOLESTEROL ESTERASE (EC 3.1.1.13)

REAGENTS: (continued)

- D. 15% (w/v) Taurocholic Acid Solution (Tauro) (Prepare 10 ml in deionized water using Taurocholic Acid, Sodium Salt, Sigma Prod. No. T-4009.)
- E. 15% (w/v) Cholic Acid Solution (Chol) (Prepare 10 ml in deionized water using Cholic Acid, Sodium Salt, Sigma Prod. No. C-1254.)
- F. 1.76% (w/v) 4-Aminoantipyrine Solution (4-AAP) (Prepare 1 ml in deionized water using 4-Aminoantipyrine, Free Base, Sigma Prod. No. A-4382.)
- G. 5% (w/v) Phenol Solution (Phenol) (Prepare 10 ml in deionized water using Phenol, Sigma Prod. No. P-4161.)
- H. Cholesterol Oxidase Enzyme Solution (Chol Oxid) (Immediately before use, prepare a solution containing 20 - 30 units/ml of Cholesterol Oxidase, Sigma Prod. No. C-1512, in cold Reagent A.)
- I. Peroxidase Enzyme Solution (POD) (Immediately before use, prepare a solution containing 40 - 60 units/ml of Peroxidase Type II from Horseradish, Sigma Prod. No. P-8250 in cold deionized water.)
- J. Cholesterol Esterase Enzyme Solution (Immediately before use, prepare a solution containing 0.25 - 0.85 unit/ml of Cholesterol Esterase in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes¹:

	Test	Blank
Reagent A (Buffer)	2.10	2.10
Reagent D (Tauro)	0.05	0.05
Reagent E (Chol)	0.05	0.05
Reagent I (POD)	0.10	0.10
Reagent C (Chol-Oleate)	0.50	0.50
Reagent G (Phenol)	0.05	0.05

Enzymatic Assay of CHOLESTEROL ESTERASE (EC 3.1.1.13)

PROCEDURES: (continued)

Mix by inversion and equilibrate to 37°C. Then add:

Reagent F (4-AAP)	0.05	0.05
Reagent H (Chol Oxid)	0.05	0.05

Mix by inversion and obtain the baseline at 500 nm. After approximately 5 minutes add:

	Test	<u>Blank</u>
Reagent J (Cholesterol Esterase) Reagent A (Buffer)	0.05	 0.05

Immediately mix by inversion and record the increase in A_{500nm} for approximately 10 minutes.² Obtain the ΔA_{500nm} /minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

Units/ml enzyme =

(∆A_{500nm}/min Test - ∆A_{500nm}/min Blank)(3)(df) >

(0.5)(13.78)(0.05)

3 = Total volume (in milliliters) of assay

df = Dilution factor

0.5 = Conversion factor based on one mole of H₂O₂ produces half a mole of Quinoneimine Dye 0.05 = Volume (in milliliters) of enzyme used

13.78 = Millimolar extinction coefficient of Quinoneimine Dye at 500 nm under the assay conditions

units/ml enzyme

mg solid/ml enzyme

units/ml enzyme

Units/mg protein = -

Units/mg solid =

mg protein/ml enzyme

UNIT DEFINITION:

One unit will hydrolyze 1.0 μ mole of cholesteryl oleate to cholesterol and oleic acid per minute at pH 7.0 at 37°C in the presence of taurocholate.

Enzymatic Assay of CHOLESTEROL ESTERASE (EC 3.1.1.13)

FINAL ASSAY CONCENTRATION:

In a 3.00 ml reaction mix, the final concentrations are 287 mM potassium phosphate, 0.25% (w/v) taurocholic acid, 0.25% (w/v) cholic acid, 4 - 6 units peroxidase, 1.4 mM cholesteryl oleate, 1.7% (v/v) polyoxyethylene 9 lauryl ether, 0.14% (w/v) sodium chloride, 0.083% (w/v) phenol, 0.03% (w/v) 4-aminoantipyrine, 1 - 1.5 units cholesterol oxidase and 0.013 - 0.043 unit cholesterol esterase.

REFERENCE:

Allain, C.C. et al., (1974) Clinical Chemistry, 20, 470-475

NOTES:

- 1. Add the reagents in the order written.
- 2. The fastest rate is usually between 4-8 minutes after addition of the Cholesterol Esterase.
- 3. Cholesterol Oxidase Unit Definition: One unit will convert 1.0 µmole of cholesterol to 4-cholesten-3-one per minute at pH 7.5 at 25°C.
- 4. Peroxidase Unit Definition: One unit will form 1.0 mg purpurogallin from pyrogallol in 20 sec at pH 6.0 at 20°C.
- 5. This assay is based on the cited reference.
- 6. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information and product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packaging slip.