

sigma-aldrich.com

 3050 Spruce Street, St. Louis, MO 63103 USA

 Tel: (800) 521-8956
 (314) 771-5755

 Fax: (800) 325-5052
 (314) 771-5757

 email: techservice@sial.com sigma-aldrich.com

Product Information

Sodium phosphate dibasic

Bioreagent, ≥99.0% suitable for cell culture suitable for insect cell culture

Catalog Number **S5136** Store at Room Temperature

CAS RN 7558-79-4

Product Description

Molecular Formula: Na₂HPO₄ Formula Weight: 141.96

This product is cell culture tested and insect cell culture tested. It is appropriate for use in both cell culture and insect cell culture experiments.

Sodium phosphate is a reagent with very high buffering capacity, widely used in biochemistry, molecular biology, and chromatography. Sodium phosphate occurs in several forms: monobasic (NaH₂PO₄), dibasic (Na₂HPO₄), and tribasic (Na₃PO₄). Most neutral sodium phosphate buffer solutions consist of mixtures of the monobasic and dibasic forms to varying degrees, depending on the desired pH. A table for preparation of 0.1 M sodium phosphate buffer at 25 °C using various proportions of sodium phosphate monobasic and sodium phosphate dibasic has been published.¹

Some limitations of the usefulness of phosphate buffers include their precipitation of Ca²⁺ and Mg²⁺ ions, inhibition of restriction enzyme activity, and interference in protocols related to DNA ligation and bacterial transformation.¹ A study of the effect of freeze-thaw storage cycles on proteins in sodium phosphate and potassium phosphate buffer solutions has been reported.² The effect of 5 mM sodium phosphate on the efficacy of electrospray ionization (ESI) ion mobility spectrometry (IMS) analysis has been evaluated.³

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

References

- Molecular Cloning: A Laboratory Manual, 3rd ed., Sambrook, J. F., et al., Cold Spring Harbor Laboratory Press (Cold Spring Harbor, NY: 2001), p.A1.5.
- Pikal-Cleland, K.A. et al., Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric betagalactosidase. Arch. Biochem. Biophys., **384(2)**, 398-406 (2000).
- Matz, L.M. et al., Evaluation of capillary liquid chromatography-electrospray ionization ion mobility spectrometry with mass spectrometry detection. J. Chromatogr. A., 946(1-2), 59-68 (2002).
- 4. The Merck Index, 14th ed., Entry# 10059.

VNC,GCY,NSB,MAM 07/15-1

©2015 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.