

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

RESTRICTION ENDONUCELASE Hae II

Product No. R 4257

Store at 0 to -20 °C

Product Summary

Recognition Sequence: 5'PuGCGC/Py3'

Activity: 3,000 - 10,000 units/ml

Cutting: 100% Ligation: >95% Recutting: >95%

No degradation detected with >10 units for 16 hrs.

Fold over digestion: 160 (10 units x 16 hrs.)

Package Size: 50 units

Unit Definition

One unit is the enzyme activity that completely cleaves 1 μ g λ DNA in 1 hr. at 37 °C in a total volume of 25 μ l of Buffer SA for restriction endonucleases. 1 μ g pBR322 DNA is digested completely by 3.5 units of Hae II.

Specificity

Hae II recognizes the sequence PuGCGC/Py and generates fragments with 3'-cohesive ends.¹

Comments

Digestion Buffer SA is supplied as a 10x concentrate.

Information is not available for heat inactivation of Hae II.

Hae II Storage and Dilution Buffer Composition

20 mM Tris-HCl 100 mM NaCl 0.1 mM EDTA 10 mM 2-mercaptoethanol 50% (v/v) glycerol pH 7.5

1x Digestion Buffer SA (B 7531) Composition for Hae II: 100% Digestion at 37 °C.

33 mM Tris-acetate 66 mM Potassium acetate 10 mM Magnesium acetate 0.5 mM Dithiothreitol (DTT) pH 7.9

Quality Control Testing

Absence of unspecific endonuclease activities:

1 μg λDNA is incubated for 16 hrs. in 50 μl buffer SA with excess of Hae II.

Ligation and Recutting Assay

Hae II fragments obtained by complete digestion of 1 μ g λ DNA are adjusted to pH 7.6 at 4 °C. The Hae II fragments are then ligated with 0.1 units T4-DNA ligase at pH 7.6 at 4 °C. A 10 μ I reaction mixture, incubated for 16 hrs. at 4 °C, contained: 0.1 units T4-DNA ligase, 20 mM Tris-HCl, 10 mM MgCl₂, 10 mM dithioerythritol and 0.6 mM ATP.

The degree of ligation and subsequent recutting with Hae II to yield the typical pattern of λ x Hae II fragments is determined.

References

1. Roberts, R. J., et al., J. Mol. Biol., **91**, 121 (1975).

02/03