

## **User Guide**

# Microcon<sup>®</sup> Biomax<sup>®</sup> PES Centrifugal Filter Device

For research use only. Not for use in diagnostic procedures.

#### Introduction

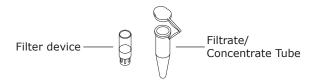
Microcon® Biomax® Polyethersulfone (PES) centrifugal filters provide efficient concentration, desalting, or buffer exchange of aqueous biological samples ranging in volume from  $10-500~\mu L$ . A built-in deadstop prevents spinning to dryness and potential sample loss. Best performance is achieved using a centrifuge with a fixed-angle rotor.

Microcon® Biomax® PES devices are provided non-sterile.

#### **Intended Use**

Microcon® Biomax® PES centrifugal filter devices are for research use only. They are not for use in diagnostic procedures.

## **Application Guidelines**


Use the following table to choose the correct Microcon® device for your application. Factors that should be considered are: Sample composition (i.e. buffers, salts, detergents); starting concentration; molecular complexity (other proteins in solution); Non Specific Binding, NSB: electrastatic/hydrophobic properies of the sample; Membrane Type using (Biomax® PES); and Membrane configuration (horizontal).

## Applications by MWCO (K)

| Reservoir Color                                                                                                       | Yellow   | Purple   | Pink | Grey | Lime | Amber |
|-----------------------------------------------------------------------------------------------------------------------|----------|----------|------|------|------|-------|
| Application                                                                                                           | 5K       | 10K      | 30K  | 50K  | 100K | 300K  |
| UF Concentration/<br>separation of<br>biologicals<br>(including Plants)                                               | 1        | <b>√</b> | 1    | 1    | 1    | ✓     |
| Protein separation (i.e. Transgenic plant-based expression systems for the manufacture of biopharmaceutical proteins) | ✓        | ✓        | ✓    | ✓    | ✓    | ✓     |
| Plant Polyphenol,<br>Anthocyans &<br>Flavinoids                                                                       | ✓        | 1        | 1    | 1    | 1    |       |
| Plant Membrane<br>Vesicles                                                                                            |          |          |      | 1    | 1    |       |
| Lysosomes<br>(50 - 70 nm)                                                                                             |          |          |      |      | ✓    | ✓     |
| Protoplast<br>(30 - 50 nm)                                                                                            |          |          |      |      | ✓    | ✓     |
| Chromatin isolation (10 - 30 nm)                                                                                      |          |          | ✓    | 1    |      |       |
| Buffer Exchange                                                                                                       | <b>√</b> | ✓        | 1    | 1    | ✓    | ✓     |
| Desalting                                                                                                             | <b>√</b> | ✓        | 1    | 1    | 1    | ✓     |
| Enyme removal (ex.<br>Cellulase [80 kDa],<br>Esterase [168 kDa])                                                      | ✓        | ✓        | ✓    | 1    |      |       |
| Endotoxin removal (~10-20 kDa with larger aggregates)                                                                 |          | ✓        | ✓    | 1    |      |       |



## **Materials Supplied**



Two tubes with attached sealing caps are included with each centrifugal filter device. During operation, one tube is used to collect filtrate, the other to recover concentrate.

## **Equipment Required**

Any centrifuge that can properly accommodate 1.5 mL microcentrifuge tubes is acceptable, although fixed-angle rotors are preferred. A variable speed centrifuge is required for Microcon® Biomax® PES devices.

## **Suitability**

Preliminary recovery and retention studies are suggested to ensure suitability for intended use. See the How to Quantify Recoveries section.

## **Device Storage**

Store at room temperature.

#### **Limitations**

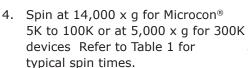
- Microcon® components are not autoclavable.
- Do not operate above the following limits, as excessive g-force may result in leakage or damage to the device:

| Microcon® Biomax® PES<br>Device | G-force    |
|---------------------------------|------------|
| 5K - 100K                       | 14,000 x g |
| 300K                            | 5,000 × g  |

**NOTE:** G-force is not the same as RPM. Calculate g-force (relative centrifugal force or RCF) using this formula:

$$RCF = 1.118 \times 10^{-6} \times radius \times (RPM)^2$$

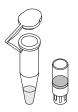
radius = distance in millimeters from the center of rotation to base of the filtrate tube


## **Rinsing Devices Before Use Not Needed**

The ultrafiltration membranes in Microcon® Biomax® PES devices do not contain any glycerine so rinsing devices before use is not needed. If rinsing is still required, then rinse by adding 0.5 mL to the device with buffer or distilled water and spinning through before use.

**NOTE:** Do not allow the membrane in Microcon® filter devices to dry out once wet. If you are not using the device immediately after rinsing, leave fluid on the membrane until the device is used.

## How to Use the Microcon® Biomax® PES Filter


- 1. Insert Microcon® Biomax® PES device into tube.
- 2. Pipette solution into device (0.5 mL maximum volume), taking care not to touch the membrane with the pipette tip. Seal with attached cap.
- 3. Place assembly in a compatible centrifuge (described in the Equipment Required section) and counterbalance with a similar device. NOTE: When placing the assembled device into the centrifuge rotor, align the cap strap toward the center of the rotor.



- 5. Remove assembly from centrifuge. Separate tube from filter device.
- 6. Place a new tube over the top of the device. Invert the assembly and centrifuge for 3 minutes at 1,000 × g (or pulse briefly) to transfer concentrate to tube.
- Remove from centrifuge. Separate tube from filter device. Close sealing cap to store sample for later use.



Assembled device during concentration spin



Individual components separated after spinning



Concentrate transfer during recovery spin



Filtrate and concentrate in sealable storage tubes

#### **Spinning to Dryness**

Extended centrifugation (2–3 times longer than guidelines) can lead to dryness. If this should occur, add at least 10  $\mu$ L of buffer to the filter device, vortex for 10–30 seconds, then proceed with recovery.

#### **Desalting / Diafiltration**

Desalting, buffer exchange, or diafiltration are important methods for removing salts or solvents in solutions containing biomolecules. The removal of salts or the exchange of buffers can be accomplished in the Microcon® Biomax® PES device by concentrating the sample, discarding the filtrate, then reconstituting the concentrate to the original sample volume with any desired solvent. The process of "washing out" can be repeated until the concentration of the contaminating micro solute has been sufficiently reduced. Typically two spins, each concentrating the sample 20-fold, will provide 95% exchange of buffers or removal of low-molecular-weight contaminants.

PR05554w Rev 03/22 2 of 7

#### **Performance**

Microcon® Biomax® PES centrifugal filter devices have been tested for flow rate, retention, and recovery with several well-known materials. Tables 1, 2 and 3 can be used to estimate device performance. Actual performance, however, depends upon the nature of the specific sample under study.

#### **Flow Rate**

Factors affecting flow rate include sample type and concentration, starting volume, relative centrifugal force, angle of centrifuge rotor, membrane type, and temperature.

Table 1. Typical Spin Times and Concentration Factors to  $\sim 10x^*$ 

| Application               | Device<br>(kDa) | G-force<br>(x g) | Typical Spin<br>Time (minutes) |
|---------------------------|-----------------|------------------|--------------------------------|
| Protein (Lysozyme 14 kDa) | 5               | 14,000           | 10                             |
| Protein (BSA 67 kDa)      | 10              | 14,000           | 5                              |
| Protein (BSA 67 kDa)      | 30              | 14,000           | 5                              |
| Protein (IgG 156 kDa)     | 50              | 14,000           | 10                             |
| Protein (IgG 156 kDa)     | 100             | 14,000           | 10                             |
| Dextran (2,000 kDa)       | 300             | 5,000            | 10                             |

<sup>\*</sup> These guidelines are for starting volumes of 500  $\mu$ L. For starting volumes less than 500  $\mu$ L, spin times will be shorter.

#### **Spin Time Optimization**

The following protocol uses weight to estimate concentrate volume, since for dilute solutions, 1 g = 1 mL. By weighing the device after multiple 2-minute spins, the spin time to achieve a desired final volume or concentration factor can be estimated. For a more comprehensive protocol on estimating performance, refer to the Direct Weighing Protocol. Optimization of the wash spin times may also be done as described below.

#### **Protocol for Optimizing Spin Time**

## e Example

 Pre-weigh an empty Microcon® Biomax® PES filter device (without tube).



Weight of empty device = .609 g

 Add sample and reweigh filled device, or if pipetting, record dispensed volume.
 Subtract the weight of the empty device (step 1) from the filled device to obtain the starting volume.
 Assemble device as indicated, and spin at the appropriate g-force for 2 minutes.



Weight of filled device = 1.109 g Starting volume = 1.109 g - 0.609 g 0.500 g (or mL) 3. Remove the filter device from the filtrate tube and weigh.

Subtract the weight of the empty device (step 1) from the after-spin weight to obtain the concentrate volume.



Weight of device after spin = 0.859 g Concentrate vol. after 1st spin = 0.859 g - 0.609 g 0.250 g (or mL)

4. Reassemble device in filtrate tube and perform another 2-minute spin. Remove device from filtrate tube and reweigh. Subtract the weight of the empty device (step 1) from the after-spin weight to obtain the concentrate volume.



Weight of device after spin = 0.709 g Concentrate vol. after 2nd spin = 0.709 g - 0.609 g 0.100 g (or mL)

5. Continue with the 2-minute spins and device weighing until the desired concentrate volume or concentration factor (starting volume divided by final concentrate volume) is achieved. Total the 2-minute spin times to estimate the spin time required to achieve the desired concentrate volume or concentration factor.

Concentration factor 0.500 mL/0.100 mL = 5X Total spin time 2 + 2 = 4 min.

#### **Retention and Recovery**

The Biomax® PES membranes in Microcon® centrifugal filter devices are characterized by a molecular weight cutoff (MWCO). MWCO is the ability of the membrane to retain molecules above a specified molecular weight. Solutes with molecular weights close to the MWCO may be only partially retained. Membrane retention depends on the solute's molecular size and shape. For most applications, molecular weight is a convenient parameter to use in assessing retention characteristics. We recommend using a membrane with a MWCO at least two to three times smaller than the molecular weight of the isolate or protein solute that one intends to concentrate.

Table 2. Typical Protein Recovery Microcon® Biomax® PES 5K - 300K Devices

|                                  | Molecular |     | Typical | % Recover | y from Cond | centrate |      |
|----------------------------------|-----------|-----|---------|-----------|-------------|----------|------|
| Solute / Concentration           | Weight    | 5K  | 10K     | 30K       | 50K         | 100K     | 300K |
| Blue Dextran (1mg/mL)            | 2,000 K   |     |         |           |             |          | 97%  |
| Bovine IgG Fraction II (1 mg/mL) | 156 K     |     |         |           | 95%         | 95%      |      |
| Bovine serum albumin (1 mg/mL)   | 67 K      |     |         | 95%       |             |          |      |
| Ovalbumin (1 mg/mL)              | 45 K      |     | 93%     |           |             |          |      |
| a-Chymotrypsinogen (1 mg/mL)     | 25 K      | 94% | 64%     |           |             |          |      |
| Lysozyme (1 mg/mL)               | 14.4 K    | 90% |         |           |             |          |      |
| Cytochrome c (0.25 mg/mL)        | 12.4 K    | 73% |         |           |             |          |      |

#### **Maximizing Sample Recovery**

Low sample recovery from the concentrate may be due to adsorptive losses, over-concentration, or passage of sample through the membrane.

- Adsorptive losses depend on sample concentration, its hydrophobic nature, temperature and time of contact with filter device surfaces, sample composition, and pH. To minimize losses, remove concentrated samples immediately after centrifugal spin.
- If starting sample concentration is high, monitor the centrifugation process in order to avoid over-concentration of the sample. Over-concentration can lead to precipitation and potential sample loss.
- If the sample appears to be passing through the membrane, choose a lower MWCO Microcon<sup>®</sup> Biomax<sup>®</sup> PES device.
- For Microcon® Biomax® PES devices in concentration and desalting applications, concentration factors of 100x can be achieved.

## **How to Quantify Recoveries**

Calculate total recovery, percent concentrate recovery, and percent filtrate recovery using the protocol below. This protocol provides a close approximation of recoveries for solutions having concentrations up to roughly 20 mg/mL.

**NOTE:** Appropriate assay techniques include absorption spectrophotometry, radioimmunoassay, refractive index, and conductivity.

#### **Direct Weighing Protocol**

The density of most dilute proteins is nearly equal to the density of water (i.e., 1~g/mL). Using this property, the concentrate and filtrate volumes can be quantified by weighing them and converting the units from grams to milliliters. This technique is valid only for solutions with concentrations of approximately 20~mg/mL or less.

- Separately weigh the empty filter device, filtrate collection tube, and concentrate collection tube before use.
- 2. Fill filter device with solution and reweigh.
- 3. Assemble device in filtrate collection tube and centrifuge per instructions.
- 4. Collect the concentrate by inverted spin into the pre-weighed concentrate collection tube.
- 5. Remove the device from the concentrate collection tube and weigh the filtrate and concentrate collection tubes.
- 6. Subtract weight of empty device/tubes to calculate weights of starting material, filtrate, and concentrate.
- 7. Assay the starting material, filtrate, and concentrate to determine solute concentration.
- 8. Calculate recoveries using the weight/volume data and the measured concentrations as follows:

% concentrate recovery = 100 
$$\times \frac{W_c \times C_c}{W_o \times C_o}$$
  
% filtrate recovery = 100  $\times \frac{W_f \times C_f}{W_o \times C_o}$ 

% total recovery = % concentrate recovery + % filtrate recovery

**W**<sub>c</sub> = total weight of

concentrate before assay

**W**<sub>o</sub>= weight of original starting material

 $\mathbf{W_f}$  = weight of filtrate

**C**<sub>c</sub> = concentrate concentration

**C**<sub>o</sub> = original starting material concentration

 $\mathbf{C}_{\mathbf{f}}$  = filtrate concentration

PR05554w Rev 03/22 4 of 7

## **Specifications**

| Maximum initial sample volume    | 0.5 mL (500 μL) |  |  |
|----------------------------------|-----------------|--|--|
|                                  |                 |  |  |
| Typical final concentrate volume | 5-50 uL         |  |  |

Maximum relative centrifugal force

| Hold-up volume        | ≤10 µL               |  |
|-----------------------|----------------------|--|
| Active membrane area  | 0.32 cm <sup>2</sup> |  |
|                       |                      |  |
| 300K devices          | 5,000 x g            |  |
| Microcon® Biomax® PES |                      |  |
| 5K - 100K devices     | 14,000 × g           |  |
| MICLOCOU BIOLUAX DES  |                      |  |

#### **Dimensions**

| Diameter                       | 12.3 mm (0.5 in.) |
|--------------------------------|-------------------|
| Length (filter device and tube |                   |
| in concentration mode)         | 45.0 mm (1.8 in.) |
| Length (filter device and tube |                   |
| in recovery mode)              | 48.2 mm (1.9 in.) |

#### **Materials of Construction**

| Membrane                  | Biomax®<br>Polyethersulfone (PES) |
|---------------------------|-----------------------------------|
|                           | ,                                 |
| Device top                | Polycarbonate                     |
|                           |                                   |
| Membrane support base     | Acetal                            |
|                           |                                   |
| Filtrate/concentrate tube | Polypropylene                     |
|                           | Medical-grade silicone            |
| O-ring                    | rubber                            |
|                           |                                   |

## **Disposal**

Microcon® Biomax® PES devices exposed to chemicals or biologics should be safely disposed of in accordance with local regulations.

As part of our commitment to increased environmental sustainability, this product is packaged in recyclable materials. Please dispose of responsibly.

## **Chemical Compatibility**

The solutions listed in the table below have been evaluated for chemical compatibility in Microcon® devices containing Biomax® PES membranes. Contact with some organic chemicals may cause leaching from component parts. If leaching is suspected, run solvent blanks before performing assays.

#### **Caution Please note the following:**

- 1. These recommendations assume pure solutions at room temperature and pressure without applied stresses. Time of exposure is not considered and some should be limited or lower concentrations used. These are critical assumptions as polymer properties are strongly affected by environmental conditions, time, the presence of external stress and the presence of additives. It is not safe to assume that property changes are linearly related to changing temperature. A 10 °C increase in temperature, for example, may place the test conditions closer to the glass transition of the polymer, thus allowing greater penetration of solvent molecules. This has a plasticizing effect, further lowering the glass transition and resulting in a modulus drop of up to three orders of magnitude.
- 2. These recommendations assume that each polymer category has a uniform chemistry, molecular weight distribution and thermomechanical history. This assumption will never be true and, in some cases, variation has a distinct influence on compatibility. Crystalline morphology and degree of crystallinity influences compatibility of semicrystalline polymers and can vary significantly. Such specific information concerning polymers evaluated does not accompany published compatibility tables.
- The definition of solvent compatibility for our products differs from that used in determining the ratings given in published compatibility tables. Such tables are generally concerned with chemical attack and significant losses in strength and/or dimensional changes. A top designation, for example, might be designated for solventpolymer combinations with <10% swelling, which is high. Other compatibility tables may make recommendations based upon dimensional change as a function of time. This is difficult to relate to a membrane that may respond almost immediately to immersion in solvent. In addition, solvent-membrane compatibility requires additional consideration of filtration-specific factors. None of these published compatibility guides, for example, monitors the solvent's ability to wet a membrane or increase extractables.
- 4. This table does not consider solvent safety issues.

PR05554w Rev 03/22 5 of 7

## **Table 3. Chemical Compatibility**

The following descriptions are abbreviated. Please see page 5 for complete information.

R = Recommended NR = Not Recommended

GR = Generally Recommended TST = Testing Recommended

|                | Chemical                                                   | Microcon®<br>Biomax® PES |
|----------------|------------------------------------------------------------|--------------------------|
|                | Acetic Acid, glacial, (≤25%)                               | R                        |
|                | Ammonium Hydroxide (5%)                                    | R                        |
|                | Ammonium sulfate (saturated) salt, aqueous solution        | R                        |
|                | Dimethylformamide<br>(≤10%, limited)                       | GR                       |
|                | Formaldehyde (≤30%), aldehyde                              | R                        |
|                | Formic Acid (5%)                                           | R                        |
|                | Glycerine (70%)                                            | R                        |
|                | Guanidine Hydrochloride, 6M salt, aqueuos solution         | R                        |
|                | Hycrochloric Acid, 1 N (HCl) acid, inorganic               | GR                       |
| Δ              | Hydrogen Peroxide, 3% peroxide                             | R                        |
| Ш              | Imidazole (300 mM)                                         | R                        |
| ۵<br>2         | Latic Acid, 50% acid,<br>organic/alcohol                   | R                        |
| Ш              | Phosphate Buffer (1M, pH 8.2)                              | R                        |
| Σ              | Phosphoric Acid (5%)                                       | R                        |
| <b>Σ</b> Ο Ο Ο | Polyethylene Glycol (10%)                                  | R                        |
| C              | Sodium Carbonate (aqueous solution) salt, aqueous solution | R                        |
| ~              | Sodium Deoxycholate (5%)                                   | R                        |
|                | Sodium Dodecyl Sulfate surfactant/detergent                | R                        |
|                | Nitric Acid (10%)                                          | R                        |
|                | Sulfamic Acid (3%)                                         | R                        |
|                | Sulfuric Acid (3%)                                         | R                        |
|                | Terg-A-Zyme® (1%), detergent                               | R                        |
|                | Trifluoroacetic Acid (10%)                                 | R                        |
|                | Tris® Buffer (1 M, pH 8.2)                                 | R                        |
|                | Triton® X-100 (5 mM)                                       | R                        |
|                | Water (Brine) salt,<br>aqueous solution                    | R                        |
|                | Mercaptoethanol (0.1 M)                                    | R                        |

|          | Chemical                                                  | Microcon®<br>Biomax® PES |
|----------|-----------------------------------------------------------|--------------------------|
| ST       | n-Butanol, Butyl alcohol (70%)                            | GR                       |
|          | Hycrochloric Acid, 1 N (HCl) acid, inorganic              | GR                       |
|          | Dimethyl Sulfoxide (DMSO),<br>(≤10% limited housing/100%) | GR/NR                    |
|          | Dimethylformamide, amide<br>(≤10% limited housing/100%)   | GR/NR                    |
| Ш        | Isopropanol Alcohol (10%/70%)                             | R/GR                     |
| Н        | Ethyl Alcohol (10%/70%)                                   | R/TST                    |
|          | Methyl Alcohol, Methanol<br>(10%/60%)                     | R/TST                    |
|          | Sodium Hydroxide (≤1N/>1N)                                | GR/TST                   |
|          | Ultrasil 11® detergent (0.5%)                             | TST                      |
| LE       | Acetone                                                   | NR                       |
|          | Acetonitrile (ACN), nitrate                               | NR                       |
|          | Benzene HC, aromatic                                      | NR                       |
| m        | Chloroform HC, halogenated                                | NR                       |
| Ħ        | Ethyl Acetate, ester                                      | NR                       |
| 4        | Hydrocarbons, aromatic                                    | NR                       |
| <u>Δ</u> | Hydrocarbons, chlorinated                                 | NR                       |
| 0        | Methyl Ethyl Ketone (MEK)                                 | NR                       |
| U        | Pyridine, amine                                           | NR                       |
| <b>-</b> | Sodium Hydroxide,<br>concentrated caustic                 | NR                       |
| Z        | Tetrahydrofuran (THF), ether                              | NR                       |
|          | Toluene HC, aromatic                                      | NR                       |
|          | Urea, 8 M salt, aqueous solution                          | NR                       |

PR05554w Rev 03/22 6 of 7

## **Troubleshooting/Optimization**

Protein recovery in retained fraction is low

| Possible Cause                                   | Solution                                                                                                                                                                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protein expression was insufficient.             | Optimize growth/induction conditions.                                                                                                                                             |
| Protein was insoluble (inclusion bodies).        | Following lysate clearance, check<br>the pellet and supernatant for<br>protein. Perform cell lysis under<br>denaturing conditions.                                                |
| Protein formed aggregates.                       | Add solubilizing agents as detergents, or increase salt concentration of lysis and binding buffers.                                                                               |
| Cell lysate was too viscous.                     | Dilute lysate in binding buffer. Add Benzonase® nuclease to lysis buffer to remove free RNA/DNA.                                                                                  |
| Sample bound non-<br>specifically to the device. | Check chemical compatibility of buffers used.                                                                                                                                     |
| Protein precipitated due to over-concentration.  | Reduce centrifugation time during the concentration step.                                                                                                                         |
| Protein was lost during sample concentration.    | Check the filtrate in the collection tube for protein. Verify the protein's expected molecular weight to confirm that the appropriate MWCO Microcon® Biomax® PES device was used. |

#### Protein purity is poor

| Possible Cause                                            | Solution                                                                                             |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Sample was degraded due to suboptimal culture conditions. | Optimize growth/induction conditions.                                                                |
| Sample was degraded due to suboptimal lysis conditions.   | Optimize lysis parameters. Include protease inhibitors in lysis buffer.                              |
| Cell lysate was too concentrated.                         | Dilute lysate in buffer.                                                                             |
| Cell lysate was too viscous.                              | Dilute lysate in binding buffer. Include Benzonase® nuclease in lysis buffer to remove free RNA/DNA. |

#### Concentration of the contaminating microsolute is too high

| Possible Cause                                             | Solution                                                                                                                     |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| No wash steps were performed, or washing was insufficient. | Incorporate wash step(s) into sample processing. Increase volume of wash buffer. Supplement the wash buffer with detergents. |
|                                                            |                                                                                                                              |

#### Sample is not flowing (filtering) through the device

| Possible Cause          | Solution                                                                                                                                                                           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample was cold.        | Non-heat sensitive samples: Bring sample to room temperature prior to spinning in centrifuge. Heat sensitive samples: Increase centrifugation time for cold centrifuge conditions. |
| Sample was too viscous. | Dilute sample in a compatible buffer.                                                                                                                                              |

## **Product Ordering Information**

This section lists the catalogue numbers for Microcon® Centrifugal Filter Devices and related products. See the Technical Assistance section for contact information. You can purchase these products on-line at SigmaAldrich.com.

| Description                                                                                            | Qty/<br>pk | Catalogue<br>Number |
|--------------------------------------------------------------------------------------------------------|------------|---------------------|
| Microcon® Biomax® PES, 5K Device                                                                       | 25         | MPE005025           |
| Microcon® Biomax® PES, 10K Device                                                                      | 25         | MPE010025           |
| Microcon® Biomax® PES, 30K Device                                                                      | 25         | MPE030025           |
| Microcon® Biomax® PES, 50K Device                                                                      | 25         | MPE050025           |
| Microcon® Biomax® PES, 100K Device                                                                     | 25         | MPE100025           |
| Microcon® Biomax® PES, 300K Device                                                                     | 25         | MPE300025           |
| Microcon® Biomax® PES Variety Pack includes: (4) 5K, (4) 10K, (4) 30K, (4) 50K, (4) 100K, and (4) 300K | 24         | MPEVAR024           |
| Benzonase® Nuclease Purity >99%                                                                        |            | 70664               |
| Benzonase® Nuclease HC, Purity >99%                                                                    |            | 71206               |
| Benzonase® Nuclease Purity >99%                                                                        | 70746      |                     |
| Benzonase® Nuclease HC, Purity >90%                                                                    | 71205      |                     |

#### **Notice**

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

#### **Contact Information**

For the location of the office nearest you, go to SigmaAldrich.com/offices.

#### **Technical Assistance**

Visit the tech service page on our web site at SigmaAldrich.com/techservice.

## **Standard Warranty**

The applicable warranty for the products listed in this publication may be found at <a href="SigmaAldrich.com/terms">SigmaAldrich.com/terms</a>.

Merck, Millipore, Microcon, Biomax, Benzonase, and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources. © 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

