

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone (800) 325-5832 (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

MOPS sodium salt SigmaUltra

Product Number **M5789**Store at Room Temperature

Product Description

Molecular Formula: C₇H₁₄NO₄SNa

Molecular Weight: 231.2 CAS Number: 71119-22-7

pK_a: 7.2 (25 °C)

Effective buffering range: pH 6.5 - 7.9

 $\Delta pK_a/\Delta T$: -0.015

Synonyms: 3-morpholinopropanesulfonic acid sodium salt, 3-(N-morpholino)propanesulfonic acid sodium salt

Trace elemental analyses have been performed on the SigmaUltra MOPS sodium salt. The Certificate of Analysis provides lot-specific results. SigmaUltra MOPS sodium salt is for applications which require tight control of elemental content.

The zwitterionic buffer MOPS is a structural analog to the Good buffer MES. The Good buffers were developed in the 1960's for general use in biochemistry to meet the following criteria:

- midrange pK_a
- maximum water solubility and minimum solubility in all other solvents
- · minimal salt effects
- minimal change in pK_a with temperature,
- · chemical and enzymatic stability,
- minimal absorption in visible or UV range
- reasonable ease of synthesis.²

The pK $_a$ of MOPS (7.2) is closer to physiological pH than that of MES (6.1), and thus MOPS may be more suitable as a physiologically relevant buffer.

MOPS buffer has been utilized in the culture of cells in such systems as *E. coli*, *Cryptococcus neoformans*, cultured human keratinocytes, and thermophilic methaogenic bacteria. ^{3,4,5,6} In protein studies, MOPS has been used in an X-ray crystallographic study of the ADP-binding site of succinyl-CoA synthetase from *E. coli*, in the characterization of the Rieske-type

ferredoxin BphF, and in an electron microscopy analysis of the engineered protein betabellin-15D. ^{7,8,9}

An investigation of the interaction of various buffers, including MOPS, with plasmid sized DNA by free solution capillary electrophoresis has been reported. A protocol describes the use of MOPS in an electrophoresis buffer for the separation of RNA in agarose gels. A procedure for preparative-scale separation of proteins by displacement chromatography that incorporates MOPS buffer has been published. 12

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in water (231 mg/ml).

Storage/Stability

Solutions of MOPS are not completely stable when autoclaved in the presence of glucose. ¹³ Solutions of MOPS turn yellow when autoclaved, indicating that MOPS is unstable to autoclaving.

References

- Ellis, K. J. and Morrison, J. F., Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol., 87, 405-426 (1982).
- 2. Good, N. E., et al, Hydrogen ion buffers for biological research. Biochemistry, **5(2)**, 467-477 (1966).
- 3. Tucker, D. L., et al., Gene expression profiling of the pH response in *Escherichia coli*. J. Bacteriol., **184(23)**, 6551-6558 (2002).
- Petrou, M. A., and Shanson, D. C., Susceptibility of *Cryptococcus neoformans* by the NCCLS microdilution and Etest methods using five defined media. J. Antimicrob. Chemother., 46(5), 815-818 (2000).

- Sando, G. N., et al., Induction of ceramide glucosyltransferase activity in cultured human keratinocytes. Correlation with culture differentiation. J. Biol. Chem., 271(36), 22044-22051 (1996).
- Foster, M. S., et al., Improved methods for the cultivation of strictly anaerobic, extremely thermophilic methanogens. Biotechniques, 15(6), 996-998, 1000, 1002 (1993).
- 7. Joyce, M. A., et al., ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography. Biochemistry, **39(1)**, 17-25 (2000).
- 8. Couture, M. M., et al., Characterization of BphF, a Rieske-type ferredoxin with a low reduction potential. Biochemistry, **40(1)**, 84-92 (2001).

- Lim, A., et al., Engineering of betabellin-15D: a 64 residue β-sheet protein that forms long narrow multimeric fibrils. Protein Sci., 7(7), 1545-1554 (1998).
- Stellwagen, N. C., et al., DNA and buffers: are there any noninteracting, neutral pH buffers? Anal. Biochem., 287(1), 167-175 (2000).
- Molecular Cloning: A Laboratory Manual, 3rd ed., Sambrook, J. and Russell, D.W., CSHL Press (Cold Spring Harbor, NY: 2001), p. 7.32.
- Narahari, C. R., et al., Displacement chromatography of proteins using a selfsharpening pH front formed by adsorbed buffering species as the displacer. J. Chromatogr. A, 825(2), 115-126 (1998).
- 13. The Merck Index, 12th ed., Entry# 6346.

GCY/RXR 1/08