

Product Information

Anti-Caspase 1 (ICE)

antibody produced in rabbit, IgG fraction of antiserum

Catalog Number **C4851**

Product Description

Anti-Caspase 1 is produced in rabbit using a synthetic peptide (PEHKTSDSTFLVFMSHGIREG) conjugated to KLH as immunogen. This sequence corresponds to amino acid residues 129-152 of human Caspase 1. The IgG fraction of antiserum is purified using protein A.

Anti-Caspase 1 recognizes the p20 (20 kDa) subunit of reduced human caspase 1 isoforms and the p45 (45 kDa) proenzyme. The antibody reacts with human, mouse and rat caspase 1.

Anti-Caspase 1 may be used for the detection and localization of caspase 1 in immunoblotting and immunocytochemistry.

Caspase 1/Interleukin-1 β converting enzyme (ICE) is a cytoplasmic cysteine protease that cleaves the inactive form of interleukin 1- β (IL-1 β) to generate the active form of this proinflammatory cytokine.^{1,2} Caspase 1/ICE is expressed in many tissues as a proenzyme of 45 kDa, which is activated by proteolytic cleavage.³ Active ICE is composed of two subunits, known as p10 (10 kDa) and p20 (20 kDa), respectively. Analysis of Caspase 1/ICE protein crystals indicates that these subunits associate as a tetramer with the stoichiometry (p20)₂/(p10)₂.^{4,5} Caspase 1/ICE has an unusual substrate specificity as it preferentially cleaves its substrates after Asp residues,⁶ that is shared by a family of cystein proteases called caspases (caspase = cysteine aspartic-specific proteases). This family of cysteine proteases are important in regulating programmed cell death and apoptosis.^{7,8} Caspase 1/ICE is functionally homologous to the protein encoded by the *C. elegans* death gene ced-3,⁹ and overexpression of Caspase 1/ICE in fibroblasts induced apoptosis.^{7,9} In addition, overexpression of Crm A, a poxviral protein that specifically inhibits Caspase 1/ICE,^{10,12} prevented apoptosis in fibroblasts and protected ganglion cells from apoptosis following NGF withdrawal.^{9,11}

Reagent

Supplied as a solution in 0.1 M Tris-glycine, pH 7.4, 0.15 M NaCl, and 0.05% sodium azide.

Antibody concentration: ~1 mg/ml.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

Store at -20 °C. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Procedure

Immunocytochemistry

1. Plate approximately 200 μ L of a cell suspension into each well of a slide. Incubate 24 hours in a 37 °C. CO₂ incubator.
2. Wash the cells 3 X for 5 minutes with PBS. Do not shake cells.
3. Add fixative (95% ethanol, 5% acetic acid) for 1 minute at room temperature.
4. Wash the cells with PBS, 2 X for 15 minutes with gentle agitation. Do not shake cells.
5. Add 400 μ L PBS containing 8% BSA and incubate 30 minutes at room temperature.
6. Wash cells with PBS for 15 min.
7. Incubate the cells with 10 μ g/mL of Anti-Caspase 1 in PBS containing 1% BSA and incubate overnight at 4 °C in a humidified chamber.
8. Wash the cells 2 X with PBS for 15 minutes.
9. Incubate the cells with a 1:150 dilution of Anti-Rabbit IgG (whole molecule)-FITC, Catalog No. F9887, in PBS for 1 hour at room temperature in the dark.
10. Wash the cells 3 X with PBS for 5 minutes in the dark.
11. Mount coverslips with gel mount and allow gel mount to dry in the dark.
12. Examine the cells under a fluorescent microscope.

Product Profile

Immunoblotting: recommended working concentration is 0.5-2 µg/mL using a human HL-60 cell lysate, Anti-Rabbit IgG-Peroxidase and a chemiluminescent detection system. The immunoreactivity can be inhibited by the immunizing peptide.

Immunocytochemistry: minimum working concentration is 10 µg/mL using human HL-60 cells.

Note: In order to obtain best results and assay sensitivity in different techniques and preparations we recommend determining optimal working dilutions by titration test.

References

1. Black, R.A., et al., *FEBS Lett.*, **247**, 386 (1989).
2. Kostura, M.J., et al., *Proc. Natl. Acad. Sci. USA*, **86**, 5227 (1989).
3. Cerreti, D.P., et al., *Science*, **256**, 97 (1992).
4. Wilson, K.P., et al., *Nature*, **370**, 270 (1994).
5. Walker, N.P., et al., *Cell*, **78**, 343 (1994).
6. Howard, A.D., et al., *J. Immunol.*, **147**, 2964 (1991).
7. Kumar, S., et al., *Genes & Dev.*, **8**, 1613 (1994).
8. Yuan, J., et al., *Cell*, **75**, 641 (1993).
9. Miura, M., et al., *Cell*, **75**, 653 (1993).
10. Ray, C., et al., *Cell*, **69**, 597 (1992).
11. Gagliardini, V., et al., *Science*, **263**, 826 (1994).
12. Enari, M., et al., *Nature*, **375**, 78 (1995).

SG,PHC 02/15-1