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Human plasma and serum represents an important 

biological material for disease diagnosis. However, 

the wide dynamic range in protein concentration 

remains a major challenge in the development of 

diagnostic assays for the very low concentration of 

biomarker proteins in the presence of high abun-

dance proteins. A practical and effective strategy is 

to remove 99% of the diagnostically uninformative 

proteins in order to enhance the detection of the 

low abundance proteins and penetrate deeper into 

the plasma proteome. Among a number of plasma 

protein depletion techniques, the ProteoPrep® 20 

represents the most powerful enabling technology 

currently available.
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1.  INTRODUCTION

1.1 Why blood plasma?

Blood plasma is not only the most studied among biological fl uids, but 
also the primary material for disease diagnosis. Blood plasma contains a 
very high concentration of proteins, typically in the range of 60-80 mg 
of protein per ml. Estimates of the number of proteins in blood plasma 
start from 10,000, but the actual number of distinct proteins may be 
several orders of magnitude higher [1,2]. This is because each protein 
has a potential for a variety of post-translational and metabolic modifi -
cations [3-6], both in normal and diseased cells.  

The global composition of proteins in the blood plasma represents the 
plasma proteome. Perfusion of blood through the different organs and 
tissues can result in the addition of new proteins, removal of some pro-
teins, or modifi cation of existing proteins, which may vary according 
to specifi c physiological or pathological conditions [7-14]. It is logical 
to expect correlation between the proteomic profi les of blood plasma 
with the specifi c physiological or pathological states. A recent extensive 
compilation of human plasma proteins indicated that most of the major 
categories of proteins in the human body were represented in the blood 
plasma [15]. Thus, the plasma proteome is an ideal source of diagnostic 
markers and therapeutic targets for many human diseases [10,11,15]. 
A protein, or most likely a set of proteins, that undergo changes in con-
centration or structural composition (e.g. PTM) as a result of disease or 
physiological state can potentially be used as diagnostic biomarkers. A 
biomarker is an identifi ed protein or group of proteins, which change 
in concentration or structural composition due to a particular disease 
state. 

When blood is coagulated and centrifuged, a translucent liquid called 
serum separates as a top layer. The coagulated portion is presumed to 
be mostly fi brin and other proteins involved in the coagulation process. 
The serum still contains a very high concentration of proteins. While 
both plasma and serum have been extensively used for diagnostic pur-
poses, there is an increasing trend towards the use of blood plasma for 
proteomic profi ling to ensure that important proteins are not trapped 
and lost into the coagulated portion.

As alternatives to blood plasma and serum, proteomic analyses of other 
biological fl uids such as cerebral spinal fl uid (CSF), urine [16-18], saliva 
[19-21], interstitial fl uid [22], amniotic fl uid [23-26], follicular fl uid [27], 
and platelet-derived microparticles in blood [28] are also now being 
investigated for diagnostic biomarker discovery. In addition, proteomic 
profi les of human tissues like the brain, heart, liver, lung, muscle, pancre-
as, spleen, and testis are now being explored [29]. While the usefulness 
of these alternative biological fl uids or tissues has not yet been clearly 
established, it is very conceivable that their profi les will complement or 
supplement those obtained from blood plasma or serum proteomics.

1.2 Why proteomics?

There are two important biomolecular disciplines used in identifying dis-
ease-associated biomarkers: genomics and proteomics. In the genomics 
approach, genes that are associated with specifi c diseases or physiologi-
cal processes are identifi ed and studied. The Human Genome Project 
(HGP) led to the successful sequencing of the human genome [30,31], 
which resulted in the identifi cation of about 20,000 – 25,000 genes in 
the human body [32]. In various diseased states the expression of spe-
cifi c genes may either be enhanced (turned on) or suppressed (turned 
off). Thus, the levels of mRNA generated from the relative expression of 
these genes have been thought to correlate to specifi c diseased states. 

However, there are still questions about the correlation between the 
expression levels of mRNAs and the corresponding changes in expres-
sion levels of proteins expressed, whether in human tissues [12,33,34] 
or in yeast cells [35,36]. In addition, one gene may express multiple 

proteins [35,37], with multiple biological functions. Finally, the proteins 
expressed from the genes may undergo a variety of post-translational 
modifi cations [4,5], as well as isoforms [38], some of which may be 
important in disease processes.  For example, human plasma has been 
shown to contain 22 different forms of α-1-antitrypsin [39]. In many 
cases, the processes that regulate post-translational protein modifi ca-
tions are independent of gene function. Thus, despite the abundance of 
scientifi c data, diagnostic approaches based on genomic studies are still 
limited and are not always practical for clinical use. 

The obvious alternative is the proteomics approach since, as the fi nal 
form of the gene product, proteins are most directly related with bio-
logical function. The proteome is also more responsive to physiological 
and diseased states, as well as external stimuli. The dynamic nature of 
the proteome, as opposed to the static nature of the genome, makes 
the proteome a “real time” indicator of physiological processes. The 
proteomes of normal and diseased states are quantitatively compared, 
and biomarker proteins are then identifi ed based on their relative abun-
dance or structural form (i.e. PTM state) [7,8,10,11,40-56]. Once iden-
tifi ed, these biomarker proteins are utilized for developing diagnostic 
tools, and the processes that regulate their expression, processing and 
functions can be used as therapeutic targets for drug candidates. Pro-
teomic analyses have been used to investigate potential biomarkers for 
such diseases as cancer [7,8,22,40-52,56-65], hemophilia [53], osteoar-
thritis [54], and cardiovascular diseases [55]. 

The major goal of plasma and serum proteomics is to obtain the most 
reliable information possible for diagnostic and therapeutic purposes. 
This requires the establishment of accurate and comprehensive baseline 
data of the serum proteome, including as many of the low abundance 
proteins as possible, against which subsequent data from a variety of 
serum samples can be compared. A baseline profi le includes both the 
identifi cation and quantitation of different proteins. Such a baseline 
would permit better detection of signifi cant changes in biomarker levels 
as a result of specifi c physiological conditions or disease, as well as indi-
cate whether the condition warrants further investigation. Highly sensi-
tive and accurate biomarkers are very important in detecting the early 
onset of diseases, since these biomarker proteins are usually present at 
very low concentrations. 

Although simple in principle, obtaining reliable baseline information is 
extremely diffi cult in practice [2,66]. Major issues include variability in 
sample collection and handling [66-69], a lack of standardized proto-
cols and instrumentation [64,70-74], and differences in handling, pro-
cessing and interpreting the data [68,75-79]. The recognition of the 
enormity of the problem and potential benefi ts of success has brought 
international cooperation and coordination within the research com-
munity, [e.g. Human Proteome Organisation (HUPO)]. HUPO was orga-
nized in an attempt to provide a comprehensive analysis of the proteins 
of human plasma and serum, annotate the entire human proteome, 
and make the data publicly accessible. An initial set of data generated 
from the Plasma Proteome Project (PPP) of HUPO identifi ed 9504 pro-
teins with one or more peptides, and 3020 proteins with two or more 
peptides and were taken to represent their Core Dataset [80]. A similar 
database has annotated gene products encoded by 3778 distinct genes 
[81]. Current data from HUPO and elsewhere have successfully mapped 
6342 peptides to EnsEMBL 29.35b genome build [82]. As more sensi-
tive procedures are developed, the number of proteins identifi ed will 
likely increase. However, the present results indicate that the number of 
proteins identifi ed is still below the predicted number of proteins pres-
ent in the plasma or serum.

Proteomics is certainly a promising approach to revolutionize clinical di-
agnostics, improve prognosis, and lead to potentially life-saving medical 
treatments. However, it is very likely that genomics and proteomics will 
complement each other in establishing the most comprehensive ap-
proach to biomarker discovery and identifi cation of therapeutic targets 
that will ultimately fi nd clinical applications in the bedside.
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1.3 The analytical challenge: Detecting the low 
abundance proteins

The presence of a large number of proteins in blood plasma makes hu-
man plasma an excellent material for discovering biomarkers for poten-
tial clinical diagnostics and therapeutics. However, it also represents a tre-
mendous analytical challenge because the estimated dynamic range of 
protein concentrations in human serum may be up to 12 orders of mag-
nitude [83-86]. Albumin, the most abundant protein, constitutes over 
half of the plasma proteins and is present at 30-50 mg/ml concentration. 
In contrast, most of the potential biomarkers are secreted into the blood 
stream at very low copy number [11,26,86-89], especially in the early 
onset of diseases [7,8,40,85,88]. For example, the cytokines and the 
prostate specifi c antigen (PSA) are present in the low pg/ml levels. Based 
on this wide dynamic range, quantitation of all proteins simultaneously 
in a single assay is enormously diffi cult. The more abundant proteins will 
certainly mask the detection of the very low abundance proteins.

The analytical challenge is further increased when we consider that the 
very low concentrations of potential biomarker proteins in raw samples 
are beyond the detection limit of most analytical instruments [90]. For 
example, while mass spectrometry (MS) represents the most sophisticat-
ed and sensitive analytical tool currently available, the current dynamic 
range of detection is only about 103 when analyzed in a single spectrum. 
Even when MS is combined with an on-line separation such as HPLC, en-
hancement of the dynamic range will only be in the 104 to 106 ranges.

Innovations in both sample preparation and protein analysis are therefore 
necessary to push the analytical capabilities towards the required 1012 
dynamic range. In sample preparation, depletion of the abundant, mostly 
high molecular weight proteins is a necessity to enable loading of a much 
higher amount of the low copy and/or low molecular weight proteins for 
analysis. This strategy has been shown to effect a general enhancement 
of the intensity of the low abundance proteins, as discussed in greater 
detail in Section 2.

Innovations in protein analysis consist of a large group of multidimen-
sional separation technologies that are applied orthogonally to fraction-
ate the proteins and peptides prior to mass spectrometric analysis. These 
multidimensional technologies for protein and peptide separation vary in 
principle and instrumentation, and include such techniques as electro-
phoresis (1D-PAGE, 2D-PAGE, capillary, free-fl ow, etc.), chromatography 
(reversed-phase, ion exchange, size exclusion, affi nity, etc), ultrafi ltration, 
solvent precipitation, and other less common fractionation techniques. 
Traditionally, each orthogonal separation technique is a separate pro-
cess step. However, a signifi cant innovation was developed and termed 
Multi-Dimensional Protein Identifi cation Technology (MuDPIT), where 
two separation techniques are achieved in a single column packed with 
two different separation matrices [91]. Typically MudPIT uses a strong 
cation exchange and a reversed phase resin in single column that can 
be interfaced directly with the mass spectrometer. This technology al-
lows a higher level of automation in sample handling, analysis and data 
processing

Different combinations of these multidimensional separation technolo-
gies are used in both “top down” and “bottom up” proteomic analysis. 
In the “top down” approach [92] a mixture of proteins in a sample are 
separated into individual spots or fractions using different separation 
techniques, and the individual proteins are then analyzed  by mass spec-
trometry to establish  their identity. This is accomplished by determining 
the mass of the whole protein ion and then fragmenting the ionized 
protein to yield relatively large segments whose masses can then be de-
convoluted and compared against known proteins in protein databases.  
On the other hand, the “bottom up” approach can be performed by 
using either of two strategies: In one strategy, samples containing a mix-
ture of different proteins are subjected to multidimensional separation 
techniques and the individual protein spots or fractions are digested with 
trypsin to yield peptide fragments. With or without another separation 

step, the tryptic peptides are analyzed by mass spectrometry to estab-
lish their identify, either based on their peptide mass fi ngerprints or by 
further mass fragmentation to obtain sequence information. Recently, 
most “bottom up” proteomics employ the “shotgun” strategy [91,93-
99] where, without prior separation, entire samples containing a mixture 
of a large number of different proteins, such as plasma or serum, are 
proteolytically digested into peptides. The peptides in the tryptic digest 
are then separated by multidimensional separation techniques and then 
analyzed by mass spectrometry to establish the identities of the proteins 
present in the sample. In other words, the “top down” approach utilizes 
the mass spectral information from the whole protein for identifi cation, 
while in the “bottom up” approach the mass spectral data of the pep-
tides are used to identify their source proteins. In both “top down” and 
“bottom up” proteomics, the combination of protein depletion and mul-
tidimensional separation technologies offer signifi cant enhancement in 
sensitivity for low abundance proteins by removing the masking effect of 
the highly abundant proteins, thereby enabling deeper penetration into 
the plasma proteomes.

2. PROTEIN DEPLETION

Since protein depletion is becoming a common choice as the fi rst di-
mension in orthogonal protein separation strategies, this subject will 
be emphasized in this review. Depletion of plasma proteins can be ac-
complished using different strategies, but the fi nal goal is to separate 
the high abundance, non-diagnostic proteins from the low abundance 
proteins.

In the past, the fractions containing the most abundant proteins were 
presumed to be diagnostically unimportant and usually not analyzed. 
However, recent proteomic analyses indicate that other proteins may be 
concomitantly removed during depletion due to non-specifi c binding to 
the depleted proteins [26,70,73,74,100-111]. For example, compara-
tive experiments between non-depleted serum and serum depleted of 
the six most abundant proteins have shown that while depletion signifi -
cantly increased the number of proteins analyzed and identifi ed, some 
of the proteins found in the non-depleted serum were not found in the 
depleted serum [70,109,112]. This is mostly attributed to the so-called 
“sponge effect,” where small proteins and peptides may bind to large 
proteins that normally serve as their carriers [109,112]. In reality there is 
no quantitative data to show how much of the non-targeted proteins 
are non-specifi cally bound to the specifi cally depleted proteins, and how 
much are bound to the depletion matrices. Nevertheless, these observa-
tions raise concerns about the validity of the quantitative representa-
tion of the whole proteome when only the protein-depleted sample is 
analyzed. Therefore, for particular applications the specifi cally depleted 
bound fraction may also be analyzed to ensure that no important pro-
teins are inadvertently omitted. 

2.1 Depletion of albumin and the IgGs

Human serum albumin (HSA) and the various forms of immunoglobulins 
(IgGs) represent the most abundant proteins in the serum, constituting up 
to 80% of the total plasma proteins. The classical depletion strategy for 
albumin involves the use of the hydrophobic dye Cibacron blue, a chlo-
rotriazine dye which has high affi nity for albumin [104,105,113-115]. 
This strategy of removing albumin is still sometimes used in proteomic 
analyses because of it’s relatively low cost [52,116-120]. Other small 
molecules have been designed (e.g. mimetic dyes) which demonstrate 
greater specifi city than Cibacron Blue.  Another classical affi nity medium 
is the Protein A/G [121,122], which is used for the removal of the im-
munoglobulins [123,124]. As a group, the immunoglobulins represent 
the second most abundant proteins in the plasma or serum. A low cost 
depletion kit for simultaneous depletion of albumin and immunoglobu-
lins (Cat. No. PROTBA) is available which includes both types of resins. 

Comparative studies indicate that using antibody affi nity ligands for HSA 
and IgG result in more specifi c depletion compared to the traditional 
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Cibacron blue/Protein A or G depletion methods [71,100,106]. Because 
of this demonstrated specifi city, the trend is now towards the use of 
immunoaffi nity media for most proteomic analyses. Affi nity media are 
made up of matrices with covalently attached antibodies to the specifi c 
abundant proteins [15,124-126]. An immunoaffi nity media for HSA and 
IgG depletion is available (Cat. No. PROTIA), conveniently packed as spin 
columns that are compatible with centrifugation. 

Despite the effi ciency of immunoaffi nity media, depletion of more proteins 
besides HSA and the IgGs is necessary to enhance the detection of very low 
abundance proteins that are present at the low ng/ml to pg/ml levels. For 
example, it was estimated that even if 99.9% of albumin were removed, 
the remaining albumin concentration would be about 50 µg/ml, which is 
still 50,000-fold higher concentration compared to the tumor marker pros-
tate-specifi c antigen [26,127,128]. In addition, there are still many other 
highly abundant proteins that can potentially mask the analysis of the low 
abundance proteins and should, therefore, be removed.

2.2 Depletion of six abundant proteins

While removing HSA and the IgGs has consistently shown improvement 
in the detection of some low abundance proteins, analytical effi ciency is 
expected to improve even farther by increasing the number of proteins 
depleted. Depletion of 6 and 12 abundant proteins is expected to re-
move about 85% and 90%, respectively, of the total proteins [71,100]. 
For example, columns containing affi nity ligands for the top six abun-
dant proteins have been shown to improve the visualization, detection 
and identifi cation of more low abundance proteins [38,70,73,74,99-
101,106,109,112,129-133], when compared to depletion of only HSA 
and IgGs. In addition, data from the HUPO Plasma Proteome Project 
clearly showed that depletion of the most abundant proteins in serum, 
whether only albumin, albumin and IgGs, or the six most abundant pro-
teins, improved detection of some of the low abundance proteins [80]. 
However, the same report also indicated “incomplete sampling of pro-
teins is a dominant feature.” Part of the reason is likely the limitation in 
the amount of sample that can be loaded for analysis, before the remain-
ing high abundance proteins interfere with the analysis. An affi nity col-
umn designed to remove the 12 most abundant proteins is also available, 
but experimental data on this product is yet to emerge. 

2.3 Depletion of 20 abundant proteins

It has been suggested that removal of 18 to 22 of the most abundant 
proteins is desirable in order to effect an overall depletion of 98 to 99 
percent of the total proteins [100,134]. A new affi nity column with 
high binding capacity has been developed. The ProteoPrep® 20 Plasma 
Immunodepletion Kit (PROT20) is the only commercially available prod-
uct that contains immunoaffi nity ligands designed to remove 20 of the 
abundant proteins (Table 1) in human plasma or serum [128]. This novel 
technology is the most powerful tool currently available, and has dem-
onstrated the ability to deplete more proteins to visualize low copy 
number proteins in plasma samples and subsequently identify them by 
mass spectrometry [135].

For convenience, the ProteoPrep 20 Plasma Immunodepletion Kit 
(PROT20) is supplied as a complete kit containing 3 spin columns and 
the necessary reagents and consumable supplies. The kit also includes 
protocols that have been optimized for specifi c applications. Carefully 
controlled tests [135] indicated that each spin column removed the 20 
high abundance proteins with an average depletion of 99.6% when 10 
x 8 µl plasma depletions were concentrated and depleted twice. This de-
pletion enabled a 38-fold and a 3-fold increase, respectively, in the load 
of low abundance proteins compared to the sample without depletion 
and depletion of just 6 proteins. This enrichment consequently enabled 
the identifi cation of several low abundance proteins that could not be 
detected either in the non-depleted serum nor the 6-protein depleted 
serum. Finally, the spin columns have high economic value because they 

are re-usable for at least 100 times. Ordering information for PROT20 
and companion reagents/consumables is shown in Table 2.

As indicated previously, protein depletion can be considered an initial 
dimension in orthogonal protein separation, the purpose of which is to 
separate the highly abundant proteins from the low abundance proteins. 
Since the fl ow through from ProteoPrep 20 spin column (low abundance 
proteins) and the fraction derived from the proteins bound to the affi n-
ity media (high abundance proteins) are both in solution phase, they are 
amenable to subsequent protein separation steps. A variety of possible 
combinations of orthogonal protein separation techniques are shown in 
the workfl ow (Figure 1), depending on the application and instrumenta-
tion available to the researcher. Finally, the different fractions from the 
different multi-dimensional separation techniques are subjected to tryp-
sin digestion and analyzed by LC-mass spectrometry. Multi-dimensional 
analysis and mass spectrometry will be discussed separately elsewhere.

Table 1. The 20 abundant proteins in human plasma depleted by the 
PROT20 technology.

 Albumin Apolipoprotein A1
 IgGs Apolipoprotein A2
 Transferrin Apolipoprotein B
 Fibrinogen Acid-1-Glycoprotein
 IgAs Ceruloplasmin
 α-2-Macroglobulin Complement C4
 IgMs Complement C1q
 α-1-Antitrypsin IgDs
 Complement C3 Prealbumin
 Haptoglobulin Plasminogen

Table 2. Ordering information for ProteoPrep 20 plasma immunodeple-
tion kit and related reagents.

 Product No. Description Pack Size(s)
 PROT20 ProteoPrep® 20 Plasma  1 kit
  Immunodepletion Kit
 C0356 Chaotropic Membrane  1 bottle,   
  Extraction Reagent 4 4 bottles
 PROTRA ProteoPrep® Reduction 1 kit
   and Alkylation Kit
 I3531 IPG Strips, 11 cm, pH 4-7 12 each
 I7281 IPG Equilibration Buffer 1 bottle
 M4038 SigmaMarkerTM Wide Range 1 vial, 
   10 vials
 G1041 EZBlueTM Gel Staining Reagent 500 ml, 3.8 L
 M0286 5,000 NMWL Filter 25 each
 PROTPR ProteoPrep® Protein  1 kit
  Precipitation Kit
 C3041 Carbonate Bicarbonate Buffer 50 capsules, 
   100 capsules
 T0440 3,3’,5,5’-Tetramethylbenzidine 
  (TMB) Liquid Substrate System 100 ml, 1 L
   for ELISA
 QPBCA QuantiPro BCA Assay Kit 1 kit
 PP0100 Trypsin Profi le IGD Kit 1 kit
 PROTSIL2 ProteoSilverTM plus  1 kit
  Silver Stain Kit 

http://www.sigmaaldrich.com
http://www.sigmaaldrich.com/ProductLookup.html?ProdNo=PROT20&Brand=SIGMA
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Figure 1. Typical workfl ow for protein depletion using ProteoPrep® 20 
Plasma Immunodepletion Kit (PROT20), leading to multidimensional 
separation, mass spectrometry, and protein identifi cation. The different 
separation techniques are enclosed in a dotted box to indicate that any 
combination of these techniques can be used in an orthogonal manner. 

Abbreviations used: HPLC, High Performance Liquid Chromatography; 
RP, Reversed Phase; IE, Ion Exchange; SEC, Size Exclusion; AC, Affi nity 
Chromatography; SDS-PAGE, SDS-Polyacrylamide Electrophoresis; CZE, 
Capillary Zone Electrophoresis; CIEF, Capillary Isoelectric Focusing; CGE, 
Capillary Gel Electrophoresis.
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