Restriction Endonuclease Mlu I

From Micrococcus luteus

Cat. No.	10 909 700 001
Cat. No.	10 909 718 001
Cat. No.	11 207 601 001

500 units (10 U/μl) 2500 units (10 U/µl) 2500 units, high concentration (40 U/µl)

Version 18

														OC	JIIIGI		Store a	t –15	to	-25°C
Stability/Storage The undiluted enzyme solution is stable when stored at -15 to -25° C until the control date printed on the		Number of cleavage sites on different DNAs (2): λ Ad2 SV40 Φ X174 M13mp7 pBR322 pBR328 pUC18																		
		label.	Do no	t store be	low -25°	°C to avo	id free	ezing.	7	5	C)	2		0		0	0	- 1	0
Sequence specificity	equenceMlu I recognizes the sequence A/CGCGT andpecificitygenerates fragments with 5'-cohesive termini (1).) t	NDN/	has 7 458, 55	clea 48, 1	vages 15372,	site , 177	s for <i>Mlu</i> 91, 1999	l at fol 6, 20952	lowii 2 and	וg posi- ל 22220.			
Compatible ends <i>Mlu</i> I generates compatible ends to <i>Bss</i> HII.						PFGE	tested	/	<i>Mlu</i> I has been tested in Pulsed-Field Gel Electrophore							ophore-				
Enzyme with compatible ends	n Recogi sequer	ignition ence New sequence if <i>Mlu</i> I to enzyme with compat			if <i>Mlu</i> I is compatib Enzvm	<i>i</i> I is ligated Enzyme that can cut this zyme – <i>Mlu</i> I new sequence						of genomic DNA (<i>E.coli</i> C 600) embedded in agarose for PFGE analysis 10 units of enzyme/µg DNA and 4 h incubation time are recommended.						arose nd 4 h		
Bss Hll	G/CGC	GC	A/CG	CGC	G/CGC	G	Acc Fnu Tha	II, <i>Bst</i> UI, DII, <i>Mvn</i> I, I	Activit buffer	Activity in PCR buffer			Relative activity in PCR mix (Taq DNA Polymerase buf- fer) is < 5%. The PCR mix contained λ target DNA,							
Mlu I	A/CG(CGT	A/CO	icgt	A/CGC	GT	Afl I Mvn	II, <i>Mlu</i> I, 1			r 1 r	primers, ro mix ris-not (pH 8.3, 20°C), 50 miX KCl, 1.5 mM MgCl ₂ , 200 μ M dNTPs, 2.5 U Taq DNA poly- merase. The mix was subjected to 25 amplification avalas								
Isoschizon	iers	The e	nzyme	is not kno	own to ha	ave isosc	hizom	ners.	Linati	n and	-	Mhil	fragme	nter	htain	od h		ate diae	etion	. of
Methylatio sensitivity	tion M/u I is inhibited at A*CGCGT by the presence of 5'-methylcytosine. M/u I is not influenced by the presence of N ⁶ -methyladenine (°).						recutt	recutting assay			1 μ g λ DNA are ligated with 1 U T4-DNA ligase (Cat. No. 481 220) in a volume of 10 μ l by incubation for 16 h at 4° C in 66 mM Tris-HCl, 5 mM MgCl ₂ ,									
Storage bu	iffer	20 mM Tris-HCl, 250 mM KCl, 0.1 mM EDTA, 10 mM 2-Mercaptoethanol, 0.2% Triton X-100, 50% Glycerol (v/v), pH approx. 8.0 (at 4° C).									resulting in >95 % recovery of 1 μ g λ DNA fragments. Subsequent re-cutting with <i>Mlu</i> I yields > 95% of the typical pattern of λ DNA × <i>Mlu</i> I fragments.							nents. of the		
Suppl. Incu buffer 10x	ıbation	500 mM Tris-HCl, 1 M NaCl, 100 mM MgCl ₂ , 10 mM Dithioerythrythol, pH 7.5 (at 37° C), (≙ SuRE/Cut Buffer H).						Troub	Troubleshooting			A critical component is the DNA substrate. Many compounds used in the isolation of DNA such as phenol, chloroform, EtOH, SDS, high levels of NaCl, metals (<i>e.g.</i> Hg ²⁺ , Mn ²⁺) inhibit or alter recognition								
Activity in Bold face printed buffer indicates the recommended buffer for optimal activity: System									Such compounds should be removed by EtOH precipitation followed by drying, before the DNA is added to the restriction digest reaction. Appropriate mixing of the enzyme is recommended.						A is Ided.					
		10-2	۸ 25%	Б 25-50%	L 0-10%	10-2	/i 25%	п 100%	Ouali	tv contro	- ol									
Incubation temperatu	re	37°C	-				-		4	. ,	- 	_ot-s www.	pecific o roche-a	certi appli	ficate: ed-sc	s of a ienc	analysis a e.com/ce	are avai ertificate	lable es.	e at
Unit definit Turrical	tion	One unit is the enzyme activity that completely cleaves 1 μ g λ DNA in 1 h at 37° C in a total volume of 25 μ l SuRE/Cut buffer H.					Absen unspe endon activit	ce of cific uclease ies	 1 μg λDNA is incubated for 16 h in 50 μl SuRE/Cu buffer H with excess of <i>Mlu</i> I. The number of enzym units which do not change the enzyme-specific pat is stated in the certificate of analysis. 					'Cut zyme pattern						
i ypical experiment		Component Final concentration						Absor	Absonas of		Approx 5 g [34] lobolod colf themus DNA are insubstant						oubotod			
-			DNA 1 μg 10 × SuRE/Cut Buffer H 2.5 μl						exonu activit	exonuclease activity			with 3 μ l <i>Mlu</i> I for 4 h at 37° C in a total volume of 100 μ l 50 mM Tris-HCl, 10 mM MgCl ₂ , 1 mM Dithioerythritol,						100 μl	
		Repurified water Up to a total volume of 25 µl										pH approx. 7.5. Under these conditions, no release of								
		Restr	iction	enzyme	1 ur	nit						analysis.								
Heat inacti	vation	Incubate at 37°C for 1 h. There is no information about <i>Mlu</i> I and heat inactiva-					Refere	References Number of the second sec			(1991) <i>Ger</i>) <i>Gene</i> 92 , ne Databa	991) <i>Gene</i> 16 , 73–78. <i>Gene</i> 92 , 1–248. e Database:								
			vanau								4	htt 4 Be	p://rebas nchmate:	e.neb http:	.com ://roche	e-app	lied-sciend	e.com/be	enchr	nate

Ordering Information

Roche Applied Science offers a large selection of reagents and systems for life science research. For a complete overview of related products and manuals, please visit and bookmark our home page, <u>www.roche-applied-science.com</u>, and our Special Interest Sites, including "Mapping & Cloning": <u>http://www.restriction-enzymes.com</u>.

The convenient RE Finder Program located on our Bench Mate website, <u>http://www.roche-applied-science.com/benchmate</u> helps you identify the enzymes that will cut your DNA sequence, and displays the names and recognition sequences of enzymes and isoschizomers as well as links to detailed infor-

mation (*e.g.* instructions for use) of the selected restriction enzyme.

Product	Application	Packsize	Cat. No.			
Restriction Enzymes	DNA restriction digestion	Please refer to websit	e or catalogue			
Rapid DNA Liga- tion Kit	Ligation of sticky- or blunt-ended DNA fragments in just 5 min at +15 to +25 °C.	Kit (40 DNA ligations)	11 635 379 001			
T4 DNA Ligase	Ligation of sticky- and blunt- ended DNA fragments.	100 U 500 units (1 U/µl)	10 481 220 001 10 716 359 001			
rAPid Phosphatase	Dephosphorylation of 5´-phosphate residues from nucleic acids	1000 U 5000 U	04 898 133 001 04 898 141 001			
rAPid Dephos and Ligation Kit	Dephosphorylation of nucleic acids.	40 reactions 160 reactions	04 898 117 001 04 898 125 001			
Alkaline Phospha- tase (AP), special quality for molecu- lar biology	Dephosphorylation of 5´-phosphate residues from nucleic acids.	1000 U (20 U/µl)	11 097 075 001			
Agarose MP	Multipurpose agarose for analytical and prepara- tive electrophoresis of nucleic acids	100 g 500 g	11 388 983 001 11 388 991 001			
Agarose LE	Separation of nucleic acids in the range 0.2 - 1.5 kbp	100 g 500 g	11 685 660 001 11 685 678 001			
Agarose Gel DNA Extraction Kit	For the elution of DNA fragments from agarose gels.	1 Kit (max. 100 reac- tions)	11 696 505 001			
High Pure PCR Product Purifica- tion Kit	Purification of PCR or enzymatic modification reaction (<i>e.g.</i> restriction digest)	50 purifications 250 purifications	11 732 668 001 11 732 676 001			
SuRE/Cut Buffer Set for Restriction Enzymes	Incubation buffers A, B, L, M and H for restriction enzymes	1 ml each (10× conc. solutions)	11 082 035 001			
SuRE/Cut Buffer A	Restriction enzyme incubation	$5 \times 1 \text{ ml} (10 \times \text{ conc.} \text{ solution})$	11 417 959 001			
SuRE/Cut Buffer B	Restriction enzyme incubation	$5 \times 1 \text{ ml} (10 \times \text{ conc.} \text{ solution})$	11 417 967 001			
SuRE/Cut Buffer H	Restriction enzyme incubation	$5 \times 1 \text{ ml} (10 \times \text{ conc.} \text{ solution})$	11 417 991 001			
SuRE/Cut Buffer L	Restriction enzyme incubation	5 × 1 ml (10× conc. solution)	11 417 975 001			
SuRE/Cut Buffer M	Restriction enzyme incubation	5×1 ml (10× conc. solution)	11 417 983 001			
Water, PCR Grade	Specially purified, double-distilled,	100 ml (4 vials of 25 ml)	03 315 843 001			
	deionized, and autoclaved	25 ml (25 vials of 1 ml)	03 315 932 001			
		(1 vial of 25 ml)	03 315 959 001			
BSA, special qual- ity for molecular biology	stability	20 mg (1 ml)	10 711 454 001			

Printed Materials	You can view the following manuals on our website: Lab FAQS "Find a Quick Solution" Restriction Enzyme Ordering Guide Molecular Weight Markers for Nucleic Acids				
Changes to previous version	Update of quality control.				
Trademarks	HIGH PURE and SURE/CUT are trademarks of Roche. All other product names and trademarks are the prop- erty of their respective owners.				
Regulatory Disclaimer	For life science research only. Not for use in diagnostic procedures.				

Commonly used bacterial strains

Strain	Genotype
BL21	<i>E. coli B F⁻ dcm ompT hsdS</i> ($r_{B^-}m_{B^-}$) gal (Studier, F.W. <i>et al</i> (1986) <i>J. Mol. Biol.</i> , 189 , 113.)
C600 ^e	supE44 hsdR2 thi-1 thr-1 leuB6 lacY1 tonA21; (Hanahan, D. (1983) J. Mol. Biol. 166 , 557.)
DH5α	<i>supE</i> 44 Δ(<i>lac</i> U169 (φ80d <i>lac</i> ZΔM15) <i>hsd</i> R17 <i>rec</i> A1 <i>end</i> A1 <i>gy</i> rA96 <i>thi</i> -1 <i>rel</i> A1; (Hanahan, D. (1983) <i>J. Mol. Biol.</i> 166 , 557.)
HB101	supE44 hsdS20 recA13 ara-14 proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1; (Hanahan, D., (1983) J. Mol. Biol. 166 , 557.)
JM108	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi Δ (lac-proAB); (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
JM109	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi Δ (lac-proAB) F'[traD36proAB ⁺ , lacl ^q lacZ Δ M15]; (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
JM110	<i>rpsL</i> (Str ⁷) thr leu thi-l lacY galK galT ara tonA tsx dam dcm supE44 Δ (lac-proAB) F [[] (traD36proAB ⁺ , lacl ^q lacZ Δ M15]; (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
K802	<i>supE hsdR gal metB;</i> (Raleigh, E. et al., (1986) Proc.Natl. Acad.Sci USA, 83, 9070.; Wood, W.B. (1966) J. Mol. Biol., 16 , 118.)
SURE ^r	recB recJ sbc C201 uvrC umuC::Tn5(kan ^r) lac , Δ(hsdRMS) endA1 gyrA96 thi relA1 supE44 F [*] [proAB ⁺ lacI ^q lacZΔM15 Tn10 (tet ^r); (Greener, A. (1990) Stratagies, 3 , 5.)
TG1	supE hsd $\Delta 5$ thi Δ (lac-proAB) F'[traD36proAB ⁺ , lacl ^q lacZ Δ M15]; (Gibson, T.J. (1984) PhD Theses. Cambridge University, U.K.)
XL1-Blue ^r	supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac F'[proAB ⁺ , lacl ^q lacZ Δ M15 Tn10 (tet ⁷⁾]; (Bullock et al., (1987) BioTechniques, 5, 376.)

Contact and Support

To ask questions, solve problems, suggest enhancements or report new applications, please visit our **Online Technical Support Site** at:

www.roche-applied-science.com/support

To call, write, fax, or email us, visit the Roche Applied Science home page, www.roche-applied-science.com, and select your home country. Country-specific contact information will be displayed. Use the Product Search function to find Pack Inserts and Material Safety Data Sheets.

Roche Diagnostics GmbH Roche Applied Science 68298 Mannheim Germany