3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

CDK2/Cyclin A2, active, GST tagged, human PRECISIO[®] Kinase recombinant, expressed in *Sf*9 cells

Catalog Number **C0495**Lot Number 061M0728
Storage Temperature –70 °C

Synonyms: p33(CDK2)/CCN1, CCNA

Product Description

CDK2 is a member of the Cyclin-Dependent Kinase family that is ubiquitously expressed. CDK2 is a catalytic subunit of the cyclin-dependent protein kinase complex, whose activity is restricted to the G₁/S phase, and essential for cell cycle G₁/S phase transition. CDK2 associates with and is regulated by the regulatory subunits of the complex including Cyclin A or E, CDK inhibitor p21Cip1 (CDKN1A), and p27Kip1 (CDKN1B).¹ CDK2 phosphorylates multiple cellular substrates including SMAD3 and FOXO1. Phosphorylation of FOXO1 leads to its inhibition.²

Recombinant full-length human CDK2 and CyclinA2 were co-expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST tag on both proteins. The CDK2 gene accession number is NM 001798; Cyclin A2 is NM 001237. It is supplied in 50 mM Tris-HCI, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: CDK2 ~58 kDa Cyclin A2 ~78 kDa

Purity: ≥90% (SDS-PAGE, see Figure 1)

Specific Activity: 778–1,052 nmole/min/mg (see Figure 2)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Lot Number 061M0728:
>90 % by densitometry

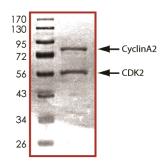
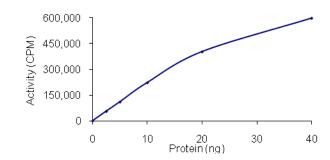



Figure 2.
Specific Activity of Lot Number 061M0728:
1,000 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA solution.

Kinase Solution – Dilute the active CDK2/Cyclin A2 (0.1 μ g/ μ l) with Kinase Dilution Buffer to the desired concentration.

Note: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active CDK2/Cyclin A2 kinase for optimal results

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the substrate (Histone H1) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the active CDK2/Cyclin A2, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -32P-ATP Assay Cocktail may be thawed at room temperature.
- In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl:

10 μl of Kinase Solution

5 μl of Substrate Solution

5 μl of cold water (4 $^{\circ}C)$

- 3. Set up a blank control as outlined in step 2, substituting 5 μ l of cold water (4 °C) for the Substrate Solution.
- 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR =
$$\frac{\text{cpm of 5} \mu \text{l of } \gamma^{-32}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7) nmole – 1.25 nmole (5 μl of 250 μM ATP Assay Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\Delta$$
cpm × (25/20)
SR × E × T

SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

- Levkau, B. et al., Cleavage of p21 (Cip1/Waf1) and p27 (Kip1) mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Molec. Cell, 1, 553-563 (1998).
- 2. Huang, H. et al., CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science, **314**, 294-297 (2006).

PRECISIO is a registered trademark of Sigma-Aldrich® Biotechnology LP and Sigma-Aldrich Co.

TD,MAM 06/11-1