

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Anti-SDF-1/PBSF

produced in goat, affinity isolated antibody

Catalog Number S192

Synonym: Anti-Stromal Cell-Derived Factor-1/Pre-B Cell Growth Stimulating Factor

Product Description

Anti-SDF-1/PBSF was produced by immunizing goats with purified $E.\ coli$ -derived recombinant human stromal cell-derived factor 1 β /pre-B cell growth stimulating factor as the immunogen. SDF-1 specific IgG was purified by SDF-1 α affinity chromatography.

This antibody can be used for the localization and detection of human SDF-1/PBSF. It can neutralize the biological activity of recombinant human SDF-1 α , Catalog Number S190, and SDF-1 β . The antibody may also be used in ELISA and immunoblotting.

SDF-1 α and SDF-1 β were initially identified and cloned from a mouse bone-marrow stromal cell line and a human stromal cell line as cytokines that supported the proliferation of a stromal cell-dependent pre-B-cell line. SDF-1 α and SDF-1 β cDNAs encode precursor proteins of 89 and 93 amino acid residues, respectively. SDF- 1α and SDF- 1β (together also known as SDF-1/PBSF) are encoded by a single gene and arise by alternative splicing. The two proteins are identical except for the four amino acid residues that are present in the carboxy-terminus of SDF-1ß and absent from SDF-1 α . Unlike other known chemokine α and β subfamily members that cluster on chromosomes 4 and 17, respectively, SDF-1/PBSF was mapped to chromosome 10q11.1. SDF-1/PBSF is highly conserved between species, with only one amino acid substitution between the human and mouse proteins. SDF-1/PBSF is a ligand for CXCR4 (fusin/LESTR) receptor that functions as a co-receptor for lymphocytetropic HIV-1 strains. SDF-1/PBSF has been found to be a powerful inhibitor of infection by lymphocyte-tropic HIV-1 strains.

Reagent

Supplied lyophilized from a sterile solution in phosphate buffered saline with 5% trehalose.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Reconstitute the contents of the vial using sterile PBS: 1 mL will yield an antibody concentration of 0.1 mg/mL.

Storage/Stability

Prior to reconstitution, store tightly sealed at –20 °C. After reconstitution and for continuous use, the solution may be stored at 2-8 °C for up to one month. For extended storage, solution should be frozen in working aliquots. Repeated freezing and thawing, or storage in "frost-free" freezers, is not recommended.

Procedure

The exact concentration of antibody required to neutralize rhSDF-1/PBSF activity is dependent on the cytokine concentration, cell type, growth conditions, and the type of activity studied. The Neutralization Dose $_{50}$ (ND $_{50}$) is defined as the concentration of antibody required to yield one-half maximal inhibition of the cytokine activity on a responsive cell line, when that cytokine is present at a concentration just high enough to elicit a maximum response. The ND $_{50}$ is determined in the presence of 2 ng/mL of rhSDF-1 α using BaF/3 cells transfected with hCXCR4 or cultured lymphocytes in a chemotaxis assay.

Product Profile

ELISA: a working concentration of 0.5-1.0 μ g/mL is recommended. The detection limit for rhSDF-1 α and rhSDF-1 β is ~ 0.6 ng/well.

Immunoblotting: a working antibody concentration of 0.1-0.2 μ g/mL is recommended. The detection limit for rhSDF-1 α and rhSDF-1 β is ~5 ng/lane under non-reducing and reducing conditions.

References

- 1. Shirozu, M., et al., *Genomics* **28**, 495-500 (1995).
- 2. Nagasawa, T., et al. *Proc. Natl. Acad. Sci. USA* **91**, 2305-2309 (1994).
- 3. Tashiro, K., et al., Science 261, 600-603 (1993).
- 4. Bleul, C., et al., *Nature* **382**, 829-833 (1996).
- 5. Oberlin, E., et al., *Nature* **382**, 833-835 (1996).

KAA,PHC 12/06-1