

Product Information

SILu™Lite SigmaMab K4 Universal Monoclonal Antibody Standard, Human recombinant, expressed in CHO cells

Catalog Number **MSQC14**

Storage Temperature –20 °C

Product Description

SigmaMab K4 is a recombinant human monoclonal antibody with a molecular mass of ~150 kDa expressed in CHO cells. It is designed for optimization of accurate intact mass analysis of monoclonal antibodies, biosimilars, and pharmaceutical products. Accurate intact mass analysis of such large biomolecules can provide comprehensive information about structural and post-translational modifications such as glycosylation. Other information such as heterogeneity, batch-to-batch variation, amino acid truncation, and N-terminal Lys processing, aggregation, and degradation can be determined. Intact mass analysis is also very important for formulation and storage in therapeutic monoclonal antibody drug development.

SigmaMab K4 is an IgG4 antibody with a Kappa light chain. It consists of two identical heavy chains and two identical light chains. The heavy chains and light chains are linked by one disulfide bond. The heavy chains are linked by two disulfide bonds located in a hinge domain. The other 12 cysteine bonds are intramolecularly restricted to six different globular domains (Figure 2).

Human IgG4 antibodies have the capacity to exchange half-molecules, which is commonly called 'Fab-arm exchange'. SigmaMab K4 has a single amino acid substitution, serine to proline in the hinge region, which reduces Fab arm exchange and stabilizes the molecule.¹

The antibody sequence has been evaluated by non-reduced and reduced intact mass and peptide mapping.

Each vial of SigmaMab K4 contains 500 µg of antibody lyophilized from a solution of phosphate buffered saline. Vial content was determined by measuring A₂₈₀ and using an extinction coefficient (E^{0.1%}) of 1.4.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Sequence Information

SigmaMab K4 Heavy Chain:

EVQLVESGGGLVQPGGSLRLSCVASGFTLNNYDMH
WVRQGIGKGLEWVKIGTAGDRYYAGSVKGRFTISR
ENAKDSLQLQMNSLRVGDAAVYYCARGAGRWAPLG
AFDIWGQGTMVTVSSASTKGPSVFPAPCSRSTSES
TAALGCLVKDLYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKV
DKRVESKYGPPC~~PP~~CPAPEFLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSQEDPEVQFNWYVGVEVHNA
KTKPREEQFNSTYRVSVLTVLHQDWLNGKEYKCKV
SNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTK
NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPP
VLSDSGSFFLYSRLTVDKSRWQEGNVFSCSVMHEAL
HNHYTQKSLSLSG

SigmaMab K4 Light Chain:

QSALTQPRSVSGSPGQSVTISCTGTSSDIGGYNFVS
WYQQHPGKAPKLMYDATKRPSPVDRFSGSKSGN
TASLTISGLQAEDEADYYCCSYAGDYTPGVVFGGGT
KLTVLTVAAPSVFIFPPSDEQLKSGTASVVCNNFYP
REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
STTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE
C

Preparation Instructions

SigmaMAb K4 recovery is maximized when phosphate buffer, pH 6–7, is used to reconstitute the lyophilized product.

Note: **Avoid PBS** for reconstitution.

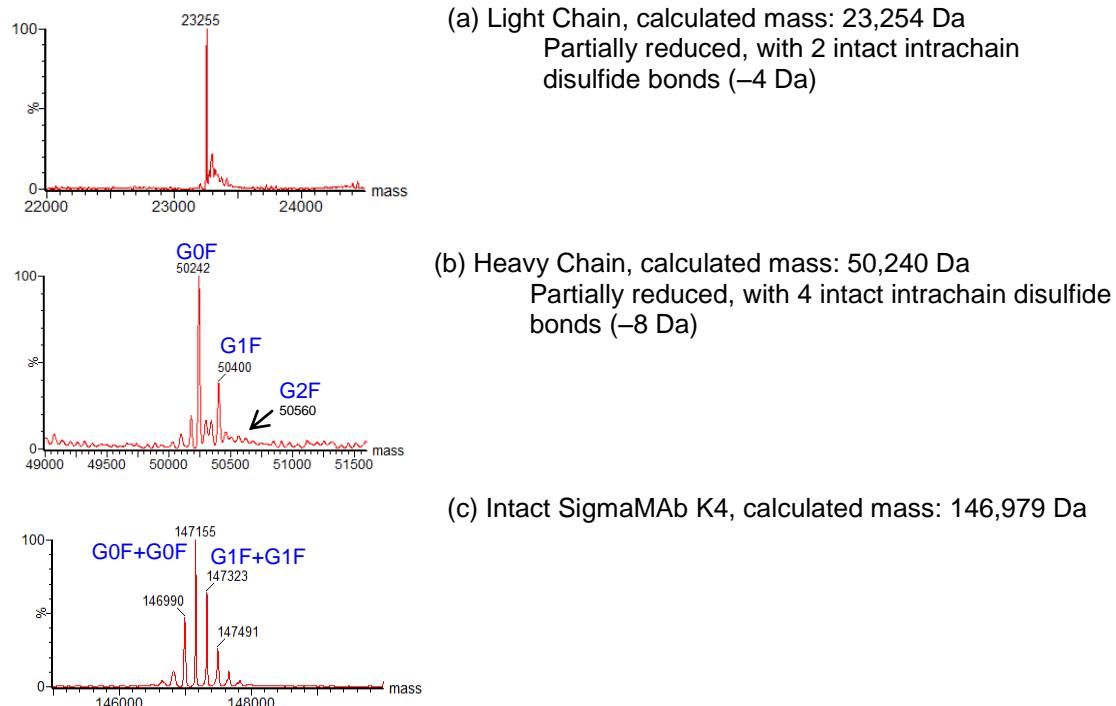
Reconstitute the contents of the vial by adding 500 µL of ultrapure water or phosphate buffer, and mixing vigorously. The solubilized product can be further diluted as needed.

Storage/Stability

Store the lyophilized product at –20 °C.

Reference

Angal, S., et al., Mol. Immunol., **30**(1), 105-108 (1993).


SILu is a trademark of Sigma-Aldrich Co. LLC.

KR,JK,PJ,MAM 06/18-1

Appendices

Figure 1.

Mass spectra

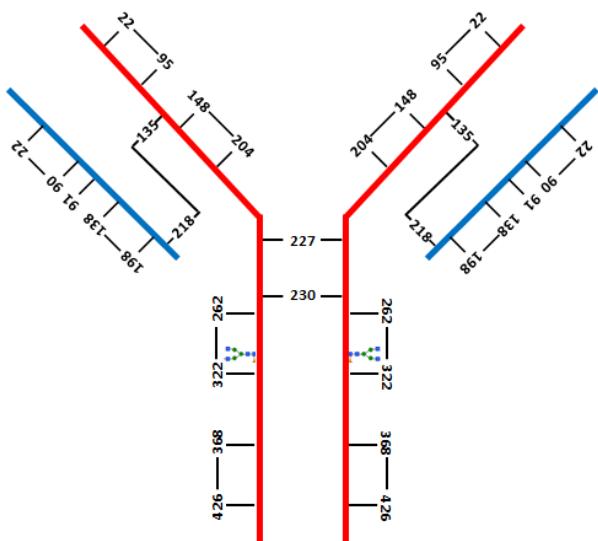
Deconvoluted mass spectra of (a) SigmaMAb light chain, (b) SigmaMAb heavy chain and (c) Intact SigmaMAb K4. The reduction was performed in non-denaturing conditions, where the interchain disulfide bonds (which are more susceptible to reduction) will break and produce the light chain and heavy chains, while the intrachain disulfide bonds within each individual domain remain intact.

Table 1.

The calculated molecular mass of light chains, heavy chains of SigmaMab K4 with the most abundant Glycoforms

Description	Composition	Modification	Avg. Mass (Da)*	Disulfide Bond
Light chain, Reduced	C ₁₀₁₇ H ₁₅₇₂ N ₂₇₂ O ₃₃₉ S ₇	Pyroglutamic acid (Q)	23257.5	2 intrachain
Heavy chain, Reduced	C ₂₁₇₁ H ₃₃₆₄ N ₅₈₂ O ₆₆₅ S ₁₇	—	48802.5	4 intrachain
	C ₂₂₂₇ H ₃₄₅₆ N ₅₈₆ O ₇₀₄ S ₁₇	G0F	50247.9	
	C ₂₂₃₃ H ₃₄₆₆ N ₅₈₆ O ₇₀₉ S ₁₇	G1F	50410.0	
	C ₂₂₃₉ H ₃₄₇₆ N ₅₈₆ O ₇₁₄ S ₁₇	G2F	50572.2	
Native. Intact product, non-reduced	C ₆₃₇₆ H ₉₈₄₀ N ₁₇₀₈ O ₂₀₀₈ S ₄₈	2 × Pyroglutamic acid (Q)	144200.1	16 (12 intrachain and 4 interchain)
	C ₆₄₈₈ H ₁₀₀₂₄ N ₁₇₁₆ O ₂₀₈₆ S ₄₈	G0F+G0F	146978.7	
	C ₆₄₉₄ H ₁₀₀₃₄ N ₁₇₁₆ O ₂₀₉₁ S ₄₈	G0F+G1F	147140.9	
	C ₆₅₀₀ H ₁₀₀₄₄ N ₁₇₁₆ O ₂₀₉₆ S ₄₈	G1F+G1F	147303.0	
	C ₆₅₀₆ H ₁₀₀₅₄ N ₁₇₁₆ O ₂₁₀₁ S ₄₈	G1F+G2F	147465.2	
	C ₆₅₁₂ H ₁₀₀₆₄ N ₁₇₁₆ O ₂₁₀₆ S ₄₈	G2F+G2F	147627.3	

G0F: GlcNAc₂Man₃GlcNAc₂Fuc


G1F: GalGlcNAc₂Man₃GlcNAc₂Fuc

G2F: Gal₂GlcNAc₂Man₃GlcNAc₂Fuc

*Masses based on NIST Physical Reference Data

Figure 2.

Disulfide bonds of SILu™ Lite SigmaMab K4

