SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

Aphidicolin from *Nigrospora sphaerica*

Catalog Number **A0781** Storage Temperature 2-8 °C

CAS RN 38966-21-1 Synonyms: ICI 69653, NSC-234714

Product Description

Molecular formula: C₂₀H₃₄O₄ Molecular weight: 338.48

Melting point: 227-233 °C1

 $[\alpha]^{27}_{D}$: +12° (c = 1 in methanol)^{1,2}

Product Description

Aphidicolin is a tetracyclic diterpene with antiviral and antimitotic properties used for cell cycle synchronization in various cell lines.³⁻⁹

Aphidicolin inhibits the growth of eukaryotic cells and the growth of certain animal viruses with no effect on prokaryotic cells growth. It specifically inhibits DNA polymerase α , which is responsible for DNA replication.^{4,10-12} It also inhibits α -like DNA polymerases of plants and yeasts,³ but does not inhibit synthesis of RNA and proteins.¹³ Aphidicolin specifically competes for the dCTP-specific binding site on DNA polymerase α .^{11,14}

DNA synthesis was inhibited in Ehrlich ascites tumor cells using Aphidicolin at 0.02–2 µg/mL,¹³ and at 100 µg/mL in *Xenopus* egg extracts.¹⁵ Treatment with aphidicolin reversibly arrests parasitic cell cycle

leading to the accumulation of cells at the G₁/S phase.¹⁶ FRA3B is the most common human fragile site, situated on chromosome band 3p14.2.^{17,18} Under normal conditions this site is stable, but upon treatment with aphidicolin, it displays gaps and breaks.¹⁹ Ataxia telangiectasia kinase (ATR) enzyme is a major damage sensor protein, which responds to stalled and collapsed replication forks.¹⁹ Aphidicolin serves as a tool in studies of ATR DNA binding and activity.¹⁹

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Aphidicolin is freely soluble in methanol. It is also soluble at 10 mg/mL in DMSO and at 1 mg/mL in ethanol. For tissue culture applications, a stock solution prepared in DMSO is preferred. It is poorly soluble in water.

Storage/Stability

Store desiccated and protected from light at 2-8 °C. Under these conditions the product is stable for 3 years. A solution of aphidicolin in ethanol is stable for at least one week when stored at 4 °C.

References

- 1. Dictionary of Organic Compounds, 5th ed., Vol. I, 416 (1982).
- 2. Merck Index, 14th ed., No. 727.
- Huberman, J.A., New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase alpha. Cell, 23, 647-648 (1981).
- Spadari, S. et al., Aphidicolin: a specific inhibitor of nuclear DNA replication in eukaryotes. *Trends in Biochem. Sci.*, 7, 29-32 (1982).
- 5. Starratt, A.N., and Loschiavo, S.R., The production of aphidicolin by *Nigrospora sphaerica*. *Can. J. Microbiol.*, **20**, 416-417 (1974).

- 6. Trost, B.M. et al., A total synthesis of aphidicolin. *J. Am. Chem. Soc.*, **101**, 1328-1330 (1979).
- Uzbekov, R. et al., Cell cycle analysis and synchronization of the *Xenopus* cell line XL2. *Exp. Cell Res.*, **242**, 60-68 (1998).
- Kues, W.A. et al., Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. *Biol. Reprod.*, 62, 412-419 (2000).
- Samuels, A.L. et al., Optimizing conditions for tobacco BY-2 cell synchronization. *Protoplasma*, 202, 232-236 (1998).
- Seki, S. et al., Differential effects of aphidicolin on replicative DNA synthesis and unscheduled DNA synthesis in permeable mouse sarcoma cells. *Biochim. Biophys. Acta*, 610, 413-420 (1980).
- 11. Oguro, M. et al., The mode of inhibitory action by aphidicolin on eukaryotic DNA polymerase alpha. *Eur. J. Biochem.*, **97**, 603-607 (1979).
- Ikegami, S. et al., Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. *Nature*, **275**, 458-460 (1978).
- Iliakis, G. et al., Effects of aphidicolin on cell proliferation, repair of potentially lethal damage and repair of DNA strand breaks in Ehrlich ascites tumour cells exposed to X-rays. *Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.*, **42**, 417-434 (1982).
- Zabel, H. et al., Mode of inhibition of the DNA polymerase of *Methanococcus vannielii* by aphidicolin. *Eur. J. Biochem.*, **165**, 171-175 (1987).
- Marheineke, K., and Hyrien, O., Aphidicolin triggers a block to replication origin firing in *Xenopus* egg extracts. *J. Biol. Chem.*, **276**, 17092-17100 (2001).

- Hofstetrová, K. et al., *Giardia intestinalis*: aphidicolin influence on the trophozoite cell cycle *Exp. Parasitol.*, **124**, 159-166 (2010).
- Huebner, K. et al., The role of deletions at the FRA3B/FHIT locus in carcinogenesis. *Recent Results Cancer Res.*, **154**, 200-215 (1998).
- Drusco, A. et al., Common fragile site tumor suppressor genes and corresponding mouse models of cancer. *J. Biomed. Biotechnol.*, **2011**, article 984505. doi:10.1155/2011/984505 (2010).
- 19. Wan, C. et al., ATR preferentially interacts with common fragile site FRA3B and the binding requires its kinase activity in response to aphidicolin treatment. *Mutat. Res.*, **686**, 39-46 (2010).

EM, VNC, PHC 01/14-1