

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Isocitrate Dehydrogenase from porcine heart

Product Number I 2516 Storage Temperature -0 °C

Product Description

Enzyme Commission (EC) Number: 1.1.1.42

CAS Number: 9028-48-2 Molecular Weight: 58-64 kDa¹

Synonyms: Isocitric Dehydrogenase (NADP⁺), ICDH,

threo-D_s-isocitrate dehydrogenase

Isocitrate dehydrogenase (NADP⁺) from porcine heart exists as a monomer in the absence of magnesium/isocitrate with a molecular weight of 58 kDa and a Stoke's radius of 29 Å. In the presence of magnesium/isocitrate, the molecular weight is 112 kDa and the Stoke's radius is 39 Å.² Isocitrate dehydrogenase (NADP⁺) catalyzes the following reaction:

DL-Isocitrate + β -NADP⁺ $\rightarrow \alpha$ -Ketoglutarate + CO₂ + β -NADPH

The enzyme is activated by Mg^{2+} and Mn^{2+} ; however, Mn^{2+} is the more potent activator. Reported K_M values are 2.6 μ M for isocitrate and 9.2 μ M for α -ketoglutarate. β -NAD $^+$ cannot replace β -NADP $^+$ as the required cofactor.

Isocitrate dehydrogenase (NADP) is inhibited by CuSO₄, p-chloromercuribenzoate, phenylmercuric nitrate, diphenylchloroarsine, and phenarsazines.³ The enzyme can also be inactivated by alkylation (iodoacetate) of the methionine residue present in the active site of the enzyme.¹

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This enzyme is soluble in 250 mM glycylglycine buffer, pH 7.4 (1 mg/ml), yielding a clear solution.

References

- Colman, R.F., Effect of modification of a methionyl residue on the kinetic and molecular properties of isocitric dehydrogenase. J. Biol. Chem., 243, 2454-2464 (1968).
- 2. Kelly, J.H., and Plaut, G.W.E., Physical evidence for the dimerization of the triphosphopyridine specific isocitrate dehydrogenase from pig heart. J. Biol. Chem., **256**, 330-334 (1981).
- 3. Ochoa, S., Isocitric dehydrogenase system (TPN) from pig heart. Meth. Enzymol., I, 699-704 (1955).
- Methods of Enzymatic Analysis, 2nd ed., Vol I, Bergmeyer, H.U., ed., Academic Press (New York, NY: 1974), pp. 479-480.

TMG/AJH 1/03