

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

p33ING2, GST-tagged, human recombinant, expressed in Sf9 cells

Catalog Number **SRP5347** Storage Temperature –70 °C

Synonyms: ING1L, ING2

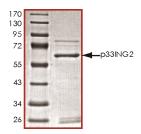
Product Description

p33ING2 is a member of the inhibitor of growth (ING) family that is associated with and modulates the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, and functions in DNA repair and apoptosis. *P33ING2* is a DNA damage-inducible gene that negatively regulates cell proliferation through activation of p53 by enhancing its acetylation.

1 P33ING2 is required for initial DNA damage sensing and chromatin remodeling in the nucleotide excision repair process.

2

Recombinant full-length human p33ING2 was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM_001564. It is supplied in 50 mM Tris-HCI, pH 7.5, 50 mM NaCI, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, and 25% glycerol.


Molecular mass: ~62 kDa

The enzymatic activity of this product has not been determined.

Figure 1.

SDS-PAGE Gel of Typical Lot:

≥70% (SDS-PAGE, densitometry)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

References

- Nagashima, M. et al., DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc. Nat. Acad. Sci., 98, 9671-9676 (2001).
- Wang, J. et al., The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res., 66, 1906-1911 (2006).

RC,MAM 10/12-1