

sigma-aldrich.com

 3050 Spruce Street, St. Louis, MO 63103 USA

 Tel: (800) 521-8956
 (314) 771-5755

 Fax: (800) 325-5052
 (314) 771-5757

 email: techservice@sial.com sigma-aldrich.com

Product Information

Thapsigargin

Catalog Number **T9033** Storage Temperature –20 °C

CAS RN: 67526-95-8 Synonyms: Octanoic acid derivative of azuleno [4,5-b]furan¹

Description

Appearance: Solid or clear film inside vial Molecular formula: $C_{34}H_{50}O_{12}$ Molecular weight: 650.75

An HPLC method for the separation and determination of the main thapsigargins found in the plant has been reported.³ The stereochemistry, ¹³C NMR spectral data and the X-ray analysis for the epoxide derivative have been reported.^{4,5}

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Method Of Preparation

Thapsigargin (TG) is extracted from the plant Thapsia garganica L. with methanol and purified by HPLC.⁶ A method of isolation from the plant extract has been reported.⁷

Storage/Stability

The product should be stable for at least one year when stored at –20 $^{\circ}\text{C}^{.6}$

Solubility/Solution Stability:

TG is soluble in DMSO⁸ and in ethanol⁹. No initial concentrations of TG were given for either solvent but it was noted that the final concentrations were: in DMSO, less than 1% (v/v)⁸; ethanol, did not exceed 1% of the total volume (working concentrations in ethanol were from 70-140 μ M).⁹ Neither amount of solvent had any adverse effects in the described systems. Preparation of a 3% (w/v) solution in deuterated DMSO was described.⁴ TG has been solubilized in acetonitrile at 10 mg/ml producing a clear, colorless solution.² TG is also soluble in methanol, diethyl ether, and methylene chloride.⁶ Solutions are recommended to be prepared fresh.⁶ However, if necessary, solutions can be stored at –20 °C under argon or nitrogen.⁶ A 1 mM solution in DMSO was reportedly stored at –20 °C (no storage time given).¹⁰

Usage/Applications:

TG is an effective inhibitor of the Ca²⁺ ion pump proteins of intracellular membranes located in sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) of skeletal, cardiac, muscle and brain microsomes.^{9,11} A concentration of 100 nM was effective in inhibiting the SR Ca²⁺-ATPase from cardiac and skeletal muscles. The action of TG is restricted to enzymes in the SR pump in intact cardiac myocytes.¹² TG interacts strongly with the SR of Ca²⁺-transport ATPase to form a 1:1 stoichiometric complex. The proposed mechanism of inhibition of Ca²⁺-ATPase activity including the inhibition of Ca^{2+} ion binding and enzyme phosphorylation have been reported.^{13,14,15} TG releases intracellular Ca²⁺ in rat hepatocytes by specific inhibition of a microsomal (ER) isoform of Ca²⁺-ATPase enzyme.¹⁶ TG, a cell permeant agent, activates platelets (at 1 μ M) and this is mediated by an increase in the cytoplasmic free calcium ion level probably through stimulation of the passive calcium transport through specific channels (as shown by protein phosphorylation).^{8,17,18} TG is a potent activator of different cell types involved in the inflammatory process.^{19,20} The compound has also been shown to promote second-stage carcinogenesis in mouse skin which does not involve direct activation of protein

kinase C (as TPA does) this suggests that it is a non-TPA type tumor promoter.²¹ The incubation of isolated rat adipocytes with 100 nM TG increases the intracellular cytosolic Ca²⁺ ion content 2-3-fold. TG reduced the insulin-stimulated glucose transport by about 40%.²² Protein synthesis in cells was inhibited up to 10 nM of TG.²³ TG, up to 300 nM, activates a nonselective univalent and bivalent SK&F 96365- and Gd3+- sensitive cation entry pathway in human neutrophils.¹⁰ At 200 nM, TG increases the sodiumdependent phosphate uptake in HeLa cells by mobilization of intracellular calcium independent of protein kinase C.²⁴ Additional studies report that inositol triphosphate (IP₃) and TG discriminate ER stores of Ca^{2+} ions in rat brain and that Ca^{2+} ion influx in human T lymphocytes is induced independently of IP₃ by mobilization of intracellular Ca²⁺ ion stores.^{25,26} At 10 ng/ml, TG stimulates arachidonic acid metabolism in rat peritoneal macrophages by acting as a selective Ca²⁺ ion mobilizer without activating protein kinase C.²⁷ TG mobilizes intracellular Ca^{2+} by an IP₃-independent mechanism in parotid acinar cells at 2 µM.²⁸ TG at 1.7 μ M has been shown to release Ca²⁺ ions from an intracellular IP₃-sensitive Ca²⁺ ion store, in a neuronal cell line by a mechanism independent of the hydrolysis of phosphoinositides and activation of protein kinase C.²⁹ Studies on the effect of TG on vascular contractility concluded that TG inhibits the ability of cAMP to stimulate Ca²⁺ ion uptake into the store by blocking its Ca²⁺ ion pump.³⁰

General Notes:

TG is a tumor promoting plant sesquiterpene lactone extract with a unique biological activity as Ca²⁺-ATPase inhibitors in animal cells.^{9,11,12,15,16,18} It is a skin irritant, a platelet activating¹⁷, inflammatory^{19,20} and tumor promoting²¹ agent. TG is toxic and a possible carcinogen.

References

- 1. Chemical Abstracts Registry data, American Chemical Society.
- 2. Sigma Quality Control Data
- 3. Jager, A.K. et al., J. Chromatogr., 634, 135 (1993).
- 4. Christensen, S.B., and Schaumburg, K., *J. Org. Chem.*, **48**, 396, (1983).
- Christensen, S.B., et al., *J. Org. Chem.*, **47**, 649, (1982).
- 6. Supplier information

- 7. Christensen, S.B., et al., *Tetrahedron Lett.*, **21**, 3829, (1980).
- 8. Thastrup, O., et al., *Biochem. Biophys. Res. Commun.*, **142**, 654, (1987).
- Kijima, Y., et al., J. Biol. Chem., 266, 22912, (1991).
- 10. Wenzel-Seifert, K., et al., *Biochem. J.*, **314**, 679, (1996).
- 11. Lytton, J., et al., J. Biol. Chem., 266, 17067, (1991)
- 12. Rogers T. B., et al., *Biosc., Rep.*, **15**, 341, (1995).
- 13. Sagara, Y., et al., *J. Biol. Chem.*, **267**, 12606, (1992).
- 14. Sagara, Y., et al., *J. Biol. Chem.*, **267**, 1286, (1992).
- 15. Inesi, G., and Sagara, Y., *Arch. Biochem. Biophys.,* **298**, 313, (1992).
- Thapstrup, O., et al., *Proc. Natl. Acad. Sci. USA*, 87, 2466, (1990).
- 17. Thastrup, O., et al., *Biochim. Biophys. Acta*, **927**, 65, (1987).
- 18. Thastrup, O., et al., *Agents and Actions*, **27**, 17, (1989).
- 19. Rasmussen, U., et al., *Acta Pharmaceut. Suec.*, **15**, 133, (1978).
- 20. Ali, H., et al., Br. J. Pharmacol., 85, 705, (1985).
- 21. Hakii, H., et al., *J. Cancer Res. Clin. Oncol*, **111**, 177, (1986).
- 22. Begum, N., et al., *J. Biol. Chem.*, **268**, 3352, (1993).
- 23. Wong, W. L., et al., Biochem. J., 289, 71, (1993).
- 24. Middleton, J. P., et al., *Am. J. Physiol.*, **259**, F727, (1990).
- 25. Verma, A., et al., *Biochem. Biophys. Res. Commun.*, **172**, 811, (1990).
- 26. Gouy, H., et al., Eur. J. Immunol., 20, 2269, (1990).
- 27. Ohuchi, K., et al., Br. *J. Pharmacol.*, **94**, 917, (1988).
- 28. Takemura, H., et al., *J. Biol. Chem.*,**264**, 12266, (1989).
- 29. Jackson, T. R., et al., Biochem. J., 253, 81, (1988).
- 30. Low, A. M., et al., *Eur. J. Pharmacol.*, **230**, 53, (1993).

*TPA, Phorbol 12-Myristate 13-Acetate

PHC 01/09-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.