sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

Anti-Myosin Va (LF-18)

produced in rabbit, affinity isolated antibody

Catalog Number M4812

Product Description

Anti-Myosin Va (LF-18) is produced in rabbit using a synthetic peptide corresponding to a region near the C-terminus of chicken myosin Va (amino acids 1782-1799 with N-terminally added lysine), conjugated to keyhole limpet hemocyanin (KLH) as immunogen. This sequence is specific for myosin Va and is identical in human, mouse, and rat myosin Va. Anti-Myosin Va (LF-18) is affinity-purified using the immunogen peptide immobilized on agarose.

Anti-Myosin Va (LF-18) recognizes myosin Va (190 kDa). Applications include immunoblotting and immunohistochemistry. Staining of myosin Va in immunoblotting is specifically inhibited with myosin Va immunizing peptide (chicken, amino acids 1782-1799 with N-terminally added lysine).

Myosin Va (p190) is a member of the unconventional class of myosins, distinct from both the myosins I and myosins II.¹⁻⁵ It is present in neuronal and non neuronal cells of the brain. Class V myosins are widely expressed actin-based motors that have been implicated in the transport and/or localization of a wide range of organelles as well as mRNA. Class V myosins have two motor head domains typical of myosins, and an extended regulatory neck domain with six tandem IQ domains that bind multiple calmodulin light chains. In addition, myosin V contains a unique 400 amino acids globular tail domain that may direct myosin V to its target or determine the cargo to which it binds.

Brain myosin Va exhibits an unusually high affinity for F-actin. In the presence of ATP, its Mg-ATPase activity is stimulated by physiological Ca²⁺ concentrations in a highly cooperative manner.⁶ Based on biochemical properties, kinetic and optical measurements, it has been suggested that myosin Va is a processive, actinbased molecular motor.^{7, 8} Myosin Va has been implicated in the regulation of vesicle trafficking in neurons and melanocytes.⁹ It has been suggested that class V myosins associate with membrane vesicles through their C-terminal tails.^{10, 11} Myosin V associates with synaptic vesicles and forms a stable complex with the synaptic vesicle membrane proteins, synaptobrevin II, and synaptophysin.^{12, 13} The *dilute* Myo5a gene mutation in myosin Va leads to mental retardation, variable cellular immunodeficiency and impaired melanocyte function (pigmentary dilution), known as Griscelli syndrome in humans.^{14, 15} Myosin Va regulates melanosome distribution along microfilaments. It is found in association with the centrosome at all stages of the cell cycle.¹⁶ In the interphase stage, myosin Va is found in pericentriolar material. During cell division, it is found in the cytoplasm and concentrates in a trail between migrating centrioles and in the mitotic spindle poles and spindle fibers.^{16, 17}

Reagent

Supplied as a 0.2 ml solution in 0.01 M phosphate buffered saline, pH 7.4, containing 1% bovine serum albumin (BSA) and 15 mM sodium azide.

Antibody concentration: ~0.4 mg/ml

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

For continuous use, store at 2-8 °C for up to one month. For prolonged storage, freeze in working aliquots at -20 °C. Repeated freezing and thawing, or storage in "frost-free" freezers, is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use. Working dilution samples should be discarded if not used within 12 hours.

Product Profile

<u>Immunoblotting</u>: a minimum working dilution of 1:1,000 is determined using a rat brain extract.

<u>Immunohistochemistry</u>: a minimum working dilution of 1:200 is determined using formalin-fixed, paraffinembedded sections of rat and chicken cerebellum.

Note: In order to obtain best results in different techniques and preparations we recommend determining optimal working dilutions by titration test.

References

- 1. Larson, R.E., et al., *J. Neurochem.*, **54**, 1288 (1990).
- Espreafico, E.M., et al., *J. Cell Biol.*, **119**, 1541 (1992).
- Espindola, F.S., et al., *J. Cell Biol.*, **118**, 359 (1992).
- 4. Cheney, R.E., et al., Cell, 75, 13 (1993).
- 5. Berg, J.S., et al., *Mol. Biol. Cell*, **12**, 780 (2001).
- Tauhata, S.B.F., et al., J. Biol. Chem., 276, 39812 (2001).
- 7. Mehta, A.D., et al., *Nature*, **400**, 590 (1999).
- Rief, M., et al., *Proc. Natl. Acad. Sci. USA*, **97**, 9482 (2000).
- 9. Tabb, J.S., et al., J. Cell Sci., 111, 3221 (1998).
- 10. Catlett, N.L., and Weisman, L.S., *Proc. Natl. Acad. Sci. USA*, **95**, 14799 (1998).

- 11. Miller, K.E., and Sheetz, M.P., *J. Biol. Chem.*, **275**, 2598 (2000).
- 12. Prekeris, R., and Terrian, D.M., J. Cell Biol., **137**, 1589 (1997).
- 13. Evans, L.L., et al., J. Cell Sci., 111, 2055 (1998).
- 14. Mercer, J.A., et al., Nature, 349, 709 (1991).
- 15. Provance, D.W., et al., *Proc. Natl. Acad. Sci. USA*, **93**, 14554 (1996).
- Espreafico, E.M., et al., *Proc. Natl. Acad. Sci. USA*, 95, 8636 (1998).
- 17. Yin, H., et al., Nature, 406, 1013 (2000).

DS,PHC 05/13-1