


Product Information

C8 DIHYDROCERAMIDE

Product Number **C 8605**

Storage Temperature -20°C

Synonyms: D-*erythro*-N-Octanoyldihydrophosphingosine

Product Description

Molecular Formula: $\text{C}_{26}\text{H}_{53}\text{NO}_3$

Molecular Weight: 427.7

Supplied as a white waxy solid

Purity: 98%

Ceramides comprise a group of cellular lipids characterized by a sphingoid base, most commonly sphingosine, linked to a fatty acid by means of an amide linkage. Ceramides are formed from the breakdown of sphingomyelin by sphingomyelinases with the concomitant release of phosphocholine.¹ Ceramide may be further metabolized to sphingosine and a free fatty acid by ceramidase.² Sphingosine and ceramide can also be phosphorylated at C₁ by intracellular sphingosine kinases. Alternatively ceramide can be glycosylated at C₁ to form gangliosides and globosides. Ceramide can also be formed directly from sphingosine by the action of ceramide synthase or from sphinganine by sphinganine N-acyltransferase via an inactive dihydroceramide intermediate that is subsequently dehydrogenated by dihydroceramide desaturase.^{3,4} The saturated intermediates are inactive forms and may be used as negative controls for the corresponding active form of ceramide.⁵ The activity of dihydroceramide desaturase depends on the alkyl chain length of the sphingoid base ($\text{C}_{18} > \text{C}_{12} > \text{C}_8$) or of the ceramide fatty acid ($\text{C}_8 > \text{C}_{18}$) and on the stereochemistry (the D-*erythro*-isoform is ten times more active than the L-*threo*-isoform).

Synthetic ceramides may form four stereoisomers, D-*erythro*, D-*threo*, L-*erythro* and L-*threo*, of which only D-*erythro*-ceramide occurs in nature. The sphingoid base usually comprises an 18-carbon chain that is hydroxylated on C₁ and C₃, amidated on C₂, and has a single *trans* double bond linking C₄ and C₅. Synthetic ceramides having a *cis* double bond have been produced. Dihydroceramides have a saturated sphingoid base. Phytoceramides occur in yeast and have a saturated sphingoid base with a third hydroxyl group. Ceramides are further classified based on the chain length and saturation of the fatty acid moiety. Thus, C6 ceramide is hexanoic acid attached to sphingosine by an amide linkage.

Ceramides are generated in response to cellular stimulation by hormones, inflammatory cytokines, FAS ligands and chemotherapeutic agents, and act as intracellular second messengers in these pathways.⁶⁻⁸ In many cell types ceramides, like sphingosine, inhibit cell growth and proliferation, activate caspases and induce DNA fragmentation and cell cycle arrest. Ceramides also block the nuclear translocation of Akt1.⁹ In contrast, phosphorylated ceramides tend to stimulate DNA synthesis and cell division.^{10,11} The development of synthetic, cell permeable ceramide and ceramide-phosphate analogs has opened new avenues for studying the biological functions of the various ceramide isoforms.

C8 dihydroceramide is hydrogenated at C₄ and C₅. It is biologically inactive *in vitro* and *in vivo* and is used as a negative control in studies of the activity C8 ceramide.⁵

Preparation Instruction

C8 dihydroceramide is soluble in DMF at 25 mg/ml, ethanol at 10 mg/ml, and DMSO at 5 mg/ml.

Storage/Stability

Store at -20°C tightly sealed for up to 12 months.

References

1. Hannun, Y.A., et al., Enzymes of sphingolipid metabolism: from modular to integrative signaling. *Biochemistry* **40**, 4893-4903 (2001).
2. Nikolova-Karakashian, M., and Merrill, A.H., Jr., Ceramidases. *Methods Enzymol.* **311**, 194-201 (2000).
3. Michel, C., et al., Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-*trans*-double bond of sphingosine at the level of dihydroceramide., *J. Biol. Chem.* **272**, 22432-22437 (1997).
4. Geeraert, L., et al., Conversion of dihydroceramide into ceramide: involvement of a desaturase., *Biochem. J.* **327**, 125-132 (1997).
5. Bielawska, A., et al., Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. *J. Biol. Chem.* **268**, 26226-26232 (1993).
6. Sharma, K., The yins and yangs of ceramide., *Cell Res.* **9**, 1-10 (1999).
7. Hannun, Y.A., and Luberto, C., Ceramide in the eukaryotic stress response., *Trends Cell. Biol.* **2**, 73-80 (2000).
8. Perry, D.K., et al., The role of ceramide in cell signaling. *Biochim. Biophys. Acta* **1436**, 233-243 (1998).
9. Salinas, M., et al., Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells., *Mol. Cell Neurosci.* **15**, 156-69 (2000).
10. Hinkovska-Galcheva, V.T., et al., The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion., *J. Biol. Chem.* **273**, 33203-33209 (1998).
11. Gomez-Munoz, A., et al., Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides., *Mol. Pharmacol.* **47**, 833-839 (1995).

AH/LY 03/02

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.