

49940 ONPG Disks (2-Nitrophenyl β-D-galactopyranoside Disks, β-Galactosidase Test Disks)

ONPG Disks are used to detect the presence of β -galactosidase, an enzyme found in lactose-fermenting organisms. Lactose utilization depends upon two enzymes: β -galactoside permease (not present in late lactose fermenters), which catalyzes transport of lactose into the cell, and β -galactosidase, which breaks down lactose into galactose and glucose. β -Galactosidase is not lactose specific and can act on simple galactosides including the ONPG (o-nitrophenyl- β -D-galactopyranose) substrate. ONPG hydrolysis results in the release of galactose, and the yellow chromogenic compound, o-nitrophenol. The test substrate, ONPG, does not depend on an induced or constitutive permease enzyme to enter the cell, therefore reactions are rapid and occur within a 24-hour period even for late lactose fermenters.

To group enterobacteriaceae the ability of fermenting lactose is routinely used.

Composition:

(1 package contains 50 disks)

Sterile filter paper disks (diameter 6mm) impregnated with o-nitrophenyl-β-D-galactopyranose

Directions:

Place one ONPG disc into a sterile test tube. Add 0.1 ml of sterile 0.85% (w/v) sodium chloride solution (physiological saline, pH 7.0) or according ISO with a phosphate buffer (34.5g/L NaH_2PO_4 , pH 7.0). Pick up the colony under test with a sterile loop and emulsify it in the tube containing the disc and physiological saline. Incubate at 35°C. To detect active lactose fermenters observe the tube at an interval of one hour, for up to 6 hours. To detect the late lactose fermenters, incubate the negative tubes for up to 24 hours.

Quality control:

Cultural characteristics in 0.85% (w/v) sodium chloride solution with an ONPG Disk after 4 hours at 35° C.

Test Organisms (ATCC)	ONPG Hydrolysis
Citrobacter freundii (8090)	+
Enterobacter aerogenes (13048)	+
Escherichia coli (25922)	+
Proteus vulgaris (8427)	-
Salmonella serotype Arizonae	+
(13314)	
Salmonella serotype Typhimurium	-
(14028)	

- 1. Positive Colony
- 2. Negative Colony
- 3. Negative Colony
- 4. Negative Control

References:

- 1. W.L. Gaby, C. Hadley, J. Bact., 74, 356 (1957)
- 2. J. Sanbrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual 2nd ed., Cold Spring Harbor, NY (1989)
- 3. S.R. Maloy, J.E. Conran (Jr.), D. Freifelder, Microbial Genetics 2nd ed. Jones and Bartlett Boston , MA (1994)
- 4. V.E. Becker, H.J. Evans, The influence of monovalent cations and hydrostatic pressure on β galactosidase activity., Biochim. Biophys. Acta, 191, 95 (1969)
- 5. M.C. Neville, G.N. Ling, Synergistic activation of β -galactosidase by Na⁺ and Cs⁺, Arch. Biochem. Biophys., 118, 596, (1967)
- 6. J. Lederberg, The β-galactosidase of Escherichia coli, strain K-12., J. Bact., 60, 381 (1950)
- 7. ISO 6579-1:2017, Microbiology of the food chain -- Horizontal method for the detection, enumeration and serotyping of Salmonella -- Part 1: Detection of Salmonella spp.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

The vibrant M, Millipore, and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. Detailed information on trademarks is available via publicly accessible resources. © 2018 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

M