3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Pyrophosphate reagent

Catalog Number **P7275** Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description

340 nm.

Pyrophosphate is determined in this procedure by a series of coupled enzyme reactions. Two moles of NADH are oxidized to NAD per mole of pyrophosphate consumed.

PP_i + F-6-P
$$\longrightarrow$$
 F-1,6-DP + P_i

Adolase
F-1,6-DP \longrightarrow GAP + DHAP

TPI
GAP \longrightarrow DHAP

2 DHAP + 2 β -NADH + 2 H⁺ \longrightarrow \Longrightarrow

2 glycerol-3-phosphate + 2 β -NAD⁺ The reaction is monitored spectrophotometrically at

<u>Legend</u>	
PP _i	Pyrophosphate
F-6-P	D-Fructose-6-phosphate
PP _i -PFK	Fructose-6-phosphate kinase,
	pyrophosphate dependent
F-1,6-DP	D-Fructose-1,6-diphosphate
P_{i}	Inorganic phosphate
GAP	D-Glyceraldehyde-3-phosphate
TPI	Triosephosphate isomerase
DHAP	Dihydroxyacetone phosphate
GDH	Glycerophosphate dehydrogenase
β-NADH	β-Nicotinamide adenine dinucleotide
•	(reduced form)
β-NAD ⁺	β-Nicotinamide adenine dinucleotide
•	(oxidized form)

The Pyrophosphate Reagent, Catalog Number P7275, is a lyophilized powder containing coupling enzymes, buffers, salts, and stabilizers. The reagent can be used to detect 10–100 nanomoles of pyrophosphate.

Reagent Required But Not Provided

Sodium pyrophosphate decahydrate, Catalog Number 221368

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Dissolve the contents of one vial of Pyrophosphate Reagent in 4.0 ml of water. After reconstitution, the vial contains the following components at the indicated concentrations:

<u>Component</u>	<u>Concentration</u>
Imidazole · HCl, pH 7.4	45 mM
Citrate	5 mM
EDTA	0.10 mM
Mg ²⁺ , Mn ²⁺ , Co ²⁺	2 mM, 0.2 mM, 0.02 mM
β-NADH	0.8 mM
F-6-P	12 mM
Bovine Serum Albumin	5 mg/ml
Sugar Stabilizer	5 mg/ml
PP _i -PFK	0.5 units/ml
Aldolase	7.5 units/ml
GDH	5 units/ml
TPI	50 units/ml

Storage/Stability

Store the Pyrophosphate Reagent at -20 °C.

The reconstituted reagent remains active up to 24 hours when store at 2–8 °C.

Procedure

- Reconstitute Pyrophosphate Reagent, see Preparation Instructions.
 Note: Do not dilute the Pyrophosphate Reagent to lower the initial A₃₄₀ of the reaction mixture, since this will dilute the components below kinetically effective concentrations.
- Prepare a 1.0 mM Pyrophosphate Standard by dissolving 44.61 mg of sodium pyrophosphate decahydrate, Catalog Number 221368, in 100 ml of water.
- 3. Sample to be tested should contain 200–2000 nanomoles of pyrophosphate per ml.
- 4. To 3 ml cuvettes (1 cm light path), add:

Reagent	Blank (ml)	Test (ml)	Standard (ml)	Control (ml)
Reconstituted Pyrophosphate Reagent	1.00	1.00	1.00	1.00
Water	1.95	1.95	1.95	1.95

5. Mix by inversion. The initial A_{340} of the reaction mixture should be ~1.5. Equilibrate to 30 °C using a thermostated spectrophotometer. Record the initial A_{340} vs. water for each cuvette, then add:

Reagent	Blank (ml)	Test (ml)	Standard (ml)	Control (ml)
Pyrophosphate Standard	_	_	0.05	0.05
Sample	_	0.05	_	0.05
Water	0.05	_	_	_

 Mix by inversion and monitor decrease in A₃₄₀ at 30 °C for all cuvettes until no further decrease is observed (~10 minutes). Record the final A₃₄₀ for each cuvette.

Results

Calculations

 ΔA_{TEST} = Initial A_{340} Test – Final A_{340} Test

 ΔA_{BLANK} = Initial A_{340} Blank – Final A_{340} Blank

Pyrophosphate, micromoles/ml in sample =

$$\frac{\Delta A_{\text{TEST}} - \Delta A_{\text{BLANK}} \times 3}{6.22 \times 2 \times 0.05} \quad = \quad$$

$$(\Delta A_{TEST} - \Delta A_{BLANK}) \times 4.82$$

3 = Volume of reaction mixture
 6.22 = Millimolar absorbtivity of NADH at 340 nm
 2 = moles of β-NADH oxidized per mole of

pyrophosphate consumed

0.05 = Volume of sample

<u>Notes</u>: Standard – 95–100% recovery of 50 nanomoles of pyrophosphate will result in a ΔA_{340} of ~0.2.

 $\Delta A_{CONTROL}$ should equal 0.2 + ΔA_{SAMPLE}

References

1. O'Brien, W., Anal. Biochem., 76, 423 (1976).

RBG,MAM 04/12-1