

Product Information

Anti-Axin1

produced in rabbit, affinity isolated antibody

Catalog Number **A8230**

Product Description

Anti-Axin1 is produced in rabbit using as immunogen a synthetic peptide corresponding to amino acids 604-624 located in the C-terminal region of rat axin1, conjugated to KLH. This sequence is highly conserved (single amino acid substitution) in mouse axin1 and human axin1 (76% identity). The antibody is affinity-purified using the immunizing peptide immobilized on agarose.

Anti-Axin1 recognizes mouse axin1 by immunoblotting (~130 kDa). Staining of the axin1 band in immunoblotting is specifically inhibited by the immunizing peptide.

The Wnt signaling pathway plays an essential role in the regulation of cellular proliferation, differentiation, motility, morphogenesis (embryonic axis formation) and has been linked to some forms of cancer.¹⁻⁴ Axin1 (axis inhibitor-1, axin, 130 kDa) acts as a negative regulator of Wnt signaling. It directly interacts with various molecules involved in the Wnt pathway, β -catenin, adenomatous polyposis coli (APC), glycogen synthase kinase-3 β (GSK-3 β) and dishevelled (Dsh).⁵⁻⁸ Wnt signaling stabilizes β -catenin by preventing its ubiquitination and degradation, allowing its direct interaction with the lymphoid enhancer factor-T cell factor (Lef-1/Tcf) family of transcription factors and upregulation of downstream genes. Axin1 enhances the phosphorylation of β -catenin by GSK-3 β , thereby promoting β -catenin degradation and inhibiting the Wnt signaling.⁹ Axin1 is involved in the degradation of β -catenin by acting as a scaffold to form a complex between β -catenin, adenomatous polyposis coli (APC) and GSK-3 β , thus facilitating β -catenin phosphorylation by GSK-3 β . Axin1 is itself phosphorylated and its activity regulated by GSK-3 β . Axin1 phosphorylation is reduced by Wnt signaling, leading to decreased affinity of interaction of axin1 and β -catenin, resulting in the release of β -catenin from the degradation complex and increased stability of β -catenin in the cell.¹⁰ Axin1 is destabilized by Wnt signaling and its levels in the cell are reduced. Axin1 contains two conserved domains, an N-terminal regulator of G-protein signaling (RGS) domain, and a C-terminal DIX domain. The C-terminal

region of axin1 is important for homodimerization, whereas the central region of axin1 binds β -catenin and GSK-3 β .^{6,11} Axin isoform axin2 (conductin, axil) is 45% identical to axin1 and appears to play a similar role to axin1 in the Wnt signaling pathway.⁸

Reagent

Supplied as a solution in 0.01 M phosphate buffered saline, pH 7.4, containing 15 mM sodium azide as a preservative.

Antibody concentration: ~1.5 mg/mL

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

For continuous use, store at 2-8°C for up to one month. For extended storage freeze in working aliquots. Repeated freezing and thawing, or storage in "frost-free" freezers, is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use. Working dilution samples should be discarded if not used within 12 hours.

Product Profile

Immunoblotting: a working concentration of 0.5-1 μ g/ml is recommended using HEK-293 cells expressing mouse FLAG-Axin-1.

Note: In order to obtain best results and assay sensitivity in different techniques and preparations we recommend determining optimal working concentrations by titration test.

References

1. Behrens, J., et al., *Science*, **280**, 596-599 (1998).
2. Wodarz, A., and Nusse, R., *Ann. Rev. Cell Dev. Biol.*, **14**, 59-88 (1998).
3. Miller, J.R., et al., *Oncogene*, **18**, 7860-7872 (1999).

4. Anderson, C.B., *et al.*, *Proc. Natl. Acad. Sci. USA*, **99**, 8683-8688 (2002).
5. Zeng, L., *et al.*, *Cell*, **90**, 181-192 (1997).
6. Fagotto, F., *et al.*, *J. Cell Biol.*, **145**, 741-756 (1999).
7. Kishida, S., *et al.*, *J. Biol. Chem.*, **273**, 10823-10826 (1998).
8. Yamamoto, H., *et al.*, *Mol. Cell Biol.*, **18**, 2867-2875 (1998).
9. Ikeda, S., *et al.*, *EMBO J.*, **17**, 1371-1384 (1998).
10. Willert, K., *et al.*, *Genes Dev.*, **13**, 1768-1773 (1999).
11. Sakanaka, C., and Williams, L.T., *J. Biol. Chem.*, **274**, 14090-14093 (1999).

ER,KAA,PHC 11/06-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.