

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Nerve Growth Factor-Beta (NGF-β) from Mouse Submaxillary Glands

Product No. N 2393

Product Description

Nerve Growth Factor (NGF) was first discovered in 1953 by Levi-Montalcini, Hamburger and Cohen¹⁻³ in two mouse sarcomas, and was described as a diffusable agent which strongly promotes fiber outgrowth of sensory neurons in chick embryos. Cohen purified NGF from snake venom⁴ and from mouse salivary glands.⁵ NGF is a neurotrophic agent thought to be provided by peripheral tissues for the guidance and sustanance of outgrowing embryonic sympathetic and sensory neurons.⁶ NGF induces the formation of neurite-like filaments from chick embryo dorsal root ganglia² and from rat PC12 pheochromocytoma cells.⁷ *In vivo* NGF may be involved in fetal development^{8,9} and nerve regeneration.¹⁰ NGF may also play a physiological role within the central nervous system.^{8,11,12} Cellular receptors for NGF have been found in a variety of cell lines¹³ and tissues, including cholinergic neurons of the brain^{14,15} and Schwann cells of damaged nerve axons.¹⁰ Two kinetic types of NGF receptors have been identified from peripheral neurons,¹⁶ neuroblastoma cells,¹⁷ and PC12 cells¹⁸ and are designated as type I (high affinity) and type II (low affinity). The signal transduction mechanism of the receptor has not been clearly identified. Nerve Growth Factor isolated from mouse submaxillary glands under non-dissociative conditions (NGF-7S, Product No. N 0513) has a sedimentation coefficient of 7.1S.^{19,20} It is generally believed that NGF-7S is a 130 KDa protein composed of 5 non-covalently linked subunits $(2\alpha, 1\beta, 2\gamma)$, although there is recent evidence for a different endogenous form of high molecular weight NGF.²¹ After dissociation of purified NGF-7S by acidic or basic pH, only the β subunit of NGF (NGF- β , Product No. N 2269) has neurotrophic activity.⁶ NGF-β is a 26.5 kDa dimer of identical 118-residue chains held together tightly by noncovalent bonds. A form of NGF- β , NGF-2.5S²² (Product No. N 6009), initially isolated under dissociative conditions, is often slightly different from NGF- β due to proteolysis incurred during its purification⁶. Apparently the 7S complex protects the amino- and carboxy-terminals of NGF-ß from hydrolytic enzymes present in the submaxillary gland extract²³. Both NGF-2.5S and NGF- β have comparable bioactive potencies²⁴. NGF- β is isolated by HPLC from purified NGF-7S of mouse submaxillary glands by a modification of the method of Varon, et al.20

Product Information

Purity: >95% by SDS-PAGE (combined monomeric and dimeric β -NGF. Biological Activity: Optimal at 0.3 - 3 ng/ml. Immunological Identity: Single band at 13 kDa (monomeric β -NGF) with minor band at 26 kDa (dimeric β - NGF) by SDS-PAGE and Western blot using Anti-NGF (2.5S). Sequence Identity: N-terminal sequence analysis β -NGF. Mass/vial: $\geq 10 \ \mu$ g by amino acid analysis. Lyophilization buffer: 125 μ l of 0.2 μ m-filtered 20 mM sodium phosphate, pH 7.0. Carrier Protein: None Endotoxin: <10 endotoxin units/vial.

Reconstitution and Use

To prepare a stock solution, reconstitute the vial contents in a solution that contains 0.1-1.0% BSA or 1-10% serum in buffered saline or tissue culture media. This may be diluted to the final working concentration of NGF- β , generally 0.1 to 10 ng/ml. Additional filtration of the stock solution is not recommended and may result in product loss due to adsorption onto the filter membrane.

Storage/Stability

Prior to reconstitution store vial below 0 °C. After reconstitution, the product may be stored for two weeks at 2-8 °C or may be stored as aliquots at -20 °C. Prolonged storage of product or repeated freezing and thawing is not recommended.

Performance Characteristics

Nerve Growth Factor- β has been tested for bioactivity using 8-day chick embyo dorsal root ganglia²⁵. The product induced an optimal degree of neurite-like filament growth when ganglia were exposed to NGF- β concentrations between 0.1 and 10 ng/ml. Filament growth was not observed from ganglia without added NGF- β . The EC₅₀ is defined as the effective concentration of growth factor that elicits a 50% increase in cell growth in a cell based bioassay.

References

- 1. Levi-Montalcini, R., Science, 237, 1154 (1987).
- Levi-Montalcini, R., et al., Cancer Res., 14, 49 (1954).
- Cohen, S., et al., Proc. Natl. Acad. Sci. USA, 40, 1014 (1954).
- 4. Cohen, S., J. Biol. Chem., **234**, 1129 (1959).
- Cohen, S., Proc. Natl. Aced. Sci. USA, 46, 302 (1960).
- Server, A. and Shooter, E., Adv. Protein Chem., **31**, 339 (1977).
- 7. Greene, R. and Tischler, A., Proc. Natl. Acad. Sci. USA, **73**, 2424 (1976).
- 8. Ayer-Lelievre, C., et al., Med. Biol., 61, 296 (1983).
- 9. Taniuchi, M., et al., Proc. Natl. Acad. Sci. USA, **83**, 4094 (1986).
- Thornburn, G., et al., Growth and Maturation Factors, Vol. 3 (G. Guroff, ed.) John Wiley & Sons, NY, p.175 (1985).
- 11. Ebendal, T., Prog. Growth Factor Res., **1**, 143 (1989).
- 12. Dreyfus, C., Trends Pharmacol. Sci., **10**, 145 (1989).

- 13. Eveleth, D., In Vitro Cell. Dev. Biol., **24**, 1148 (1988).
- 14. Hefti, F., et al., Neurosci. Let., 69, 37 (1986).
- Raivich, G. and Kreutzberg, G., Neuroscience, 20, 23 (1987).
- Godfrey, E. and Shooter, E., J. Neurosci. 6, 2543 (1986).
- Marchetti, D. and Perez-Polo, J., J. Neurochem., 49, 475 (1987).
- Buxser, S., et al., J. Biol. Chem., 265, 12701 (1990).
- 19. Varon, S., et al., Biochemistry, 6, 2202 (1967).
- 20. Varon, S., et al., Biochemistry, 7, 1296 (1968).
- 21. Young, M., et al., Biochemistry, 27, 6675 (1988).
- 22. Angeletti, R. and Bradshaw, R., Proc. Natl. Acad. Sci. USA, **68**, 2417 (1971).
- 23. Moore, J., et al., Biochemistry, 13, 833 (1974).
- 24. Mobley, W., et al., Biochemistry, 15, 5543 (1976).
- 25. Nomura, J., et al., Meth. Neurochem., **3**, 203 (1972).

Pcs1/00

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.