

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Caspase 6 Assay Kit, Fluorimetric

Catalog Number **CASP6F** Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description

Caspases (**C**ysteine-requiring **Asp**artate prote**ases**) belong to a highly conserved family of cysteine proteases with specificity for aspartic acid residues of their substrates. Caspases play a central role in apoptosis. Caspase 6 (Mch2) belongs to the group of effector caspases and is localized downstream of caspase 3. 1.2 Recently, it has been suggested that caspase 6 is implicated in Alzheimer's disease. 3

The human, recombinant caspase 6 supplied in this kit was expressed in *E. coli* as the proenzyme with a C-terminal histidine tag. It undergoes autoactivation and autoprocessing to yield 21 kDa and 19 kDa proteins (large subunit) and a 14 kDa protein containing the His tag (small subunit).¹

The assay is based on the hydrolysis of the peptide substrate N-Acetyl-Val-Glu-Ile-Asp 7-amido-4-methyl-coumarin (Ac-VEID-AMC) by caspase 6 that results in the release of the fluorophore 7-amido-4-methyl-coumarin [AMC]. ⁴ 7-amido-4-methylcoumarin fluorescence is observed with excitation at 360 nm and emission at 440 nm.

Caspase 6 Ac-VEID-AMC → Ac-VEID + AMC

The assay is performed in a 96 well plate with a total reaction volume of 100 μ l and the results are read at intervals of 5 minutes for up to 20 minutes. The final substrate concentration in this assay is 50 μ M. Maximal activity is achieved at 200 μ M. At 50 μ M, ~50% of maximal activity is obtained.

The caspase 6 inhibitor Ac-VEID-CHO is supplied to verify the specificity of the enzyme reaction in cell extracts. A concentration of 0.5 μ M will totally inhibit caspase 6 activity.

This kit provides sufficient reagents for the quick and efficient measurement of caspase 6 activity in crude and purified preparations.

Reagents

The kit is sufficient for 100 reactions in a 96 well plate.

5× Lysis Buffer 5 ml Catalog Number L2912 250 mM HEPES, pH 7.4, with 25 mM CHAPS and 25 mM DTT

10× Assay Buffer 5 ml Catalog Number A0344 200 mM HEPES, pH 7.4, with 1% CHAPS, 50 mM DTT, and 20 mM EDTA

Caspase 6, human, recombinant 5 μ g Catalog Number C7854 Lyophilized powder. Reconstitution with 50 μ l of ultrapure water will give a solution of 100 μ g/ml caspase 6 in 50 mM HEPES, pH 7.5, with 0.1% CHAPS, 4 mM DTT, 500 mM NaCl, 125 mM imidazole, and 10% sucrose. Specific Activity: >1,000 units per mg protein

Unit Definition: One unit is the amount of enzyme that

will cleave 1.0 nmol of the substrate Ac-VEID-pNA per

minute at pH 7.4 at 25 °C.

N-Acetyl-Val-Glu-Ile-Asp 7-amido-4-methylcoumarin (MW 673.7) Catalog Number A0217 Caspase 6 Substrate 5 mM Ac-VEID-AMC in DMSO

N-Acetyl-Val-Glu-Ile-Asp-Aldehyde 0.25 ml (MW 500.5)
Catalog Number A6214
Caspase 6 Inhibitor
1 mM Ac-VEID-CHO in DMSO

7-Amino-4-methylcoumarin (MW 175.2) 1 ml Catalog Number A7582 Standard Solution 1 mM AMC in DMSO

Reagents and Equipment Required but Not Provided

(Catalog Numbers given where appropriate)

- Cells of interest
- BSA (optional) Catalog Number A8022.
- Spectrofluorimeter with 96 well plate attachment
- 96 well plates for fluorescence assay
- Polypropylene test tubes and microcentrifuge tubes.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

It is recommended to use ultrapure (17 M Ω ·cm or equivalent) water when preparing the reagents.

- 1x Assay Buffer (20 mM HEPES, pH 7.4, with 2 mM EDTA, 0.1% CHAPS, and 5 mM DTT) – Dilute 10x Assay Buffer (Catalog Number A0344) 10-fold with ultrapure water.
- Caspase 6 Substrate Solution (100 μM Ac-VEID-AMC) Dilute N-Acetyl-Val-Glu-Ile-Asp 7-amido-4-methylcoumarin (Catalog Number A0217) 50-fold with 1× Assay Buffer.
- Caspase 6 Inhibitor Solution (10 μM Ac-VEID-CHO)
 Dilute N-Acetyl-Val-Glu-Ile-Asp-Aldehyde (Catalog Number A6214) 100-fold with 1× Assav Buffer.
- Caspase 6 Positive Control (~100 μg/ml) —
 Reconstitute the vial (5 μg) of Caspase 6, human,
 recombinant (Catalog Number C7854) with 50 μl of
 ultrapure water. Store in aliquots at -70 °C.
 Positive Control Working Solution (5 μg/ml) Just
 prior to running assays, dilute an aliquot of the
 Caspase 6 Positive Control 20-fold in 1× Assay
 Buffer in a polypropylene tube.
 Note: Caspase 6, human, recombinant may absorb
 to glass surfaces; therefore, all dilutions should be
 prepared in polypropylene tubes.

- AMC Standard Solution (20 μM 7-Amino-4-methyl-coumarin) Dilute the 7-Amino-4-methyl-coumarin (Catalog Number A7582) 50-fold with 1× Assay Buffer and use the AMC Standard Solution to determine a standard curve (see Table 2).
- 1x Lysis Buffer (For determination of caspase 6 activity in cell lysates) Dilute 5x Lysis Buffer (Catalog Number L2912) 5-fold with ultrapure water and use the 1x Lysis Buffer to lyse the cells.
 Note: In order to protect caspases in cell lysates from non-specific proteolysis, protease inhibitors that do not include cysteine protease inhibitors (e.g., E-64, leupeptin) may be added.

Storage/Stability

The kit ships on dry ice and storage at $-20~^{\circ}\text{C}$ is recommended.

Procedure

The same 96 well plate may be used for reaction assays and determination of the standard curve. 96 Well Plate Assay

1. Set fluorimeter: Excitation: 360 nm Emission: 440 nm

Slit width: 5 nm

Note: The wavelengths of 360 nm for excitation and 440 nm for emission were found to be optimal for this system. Raising the emission wavelength to 460 nm will cause a 25% reduction in the strength of the signal. Raising the excitation wavelength to 380 nm will cause a 60% reduction in the strength of the signal.

- 2. Add 5 μ l of the Positive Control Working Solution or x μ l of the unknown sample to the appropriate well (see Table 1).
- 3. Add the appropriate volume of 1× Assay Buffer to each well (see Table 1).
- 4. Add the Caspase 6 Inhibitor Solution to the appropriate wells. Ensure that all the wells are mixed gently to avoid bubble formation and let sit for 5 minutes at room temperature.
- 5. Start the reaction by adding 50 μ l of the Caspase 6 Substrate Solution to each well using a multichannel pipette.
- 6. Place the 96 well plate in the spectrofluorimeter and read at 5 minute intervals for up to t minutes (t can be from 20-60 minutes or even longer for very dilute samples).
- 7. Calculate the Δ fluorescence measured from zero to t minutes.

Table 1.Reaction Scheme for 96 Well Plate Assay

Reaction	Positive Control Working Solution (5 μg/ml)	Unknown Sample	1× Assay Buffer	Caspase 6 Inhibitor Solution (10 μΜ Ac-VEID-CHO)	Caspase 6 Substrate Solution (100 μM Ac-VEID-AMC)
Reagent Blank	_	-	50 μl	_	50 μl
Caspase 6 Positive Control	5 μΙ	_	45 μl	-	50 μΙ
Caspase-6 Positive Control + Inhibitor Solution	5 μΙ	-	35 μl	10 μΙ	50 μΙ
Unknown Sample	_	xμl	50–x μl	-	50 μl
Unkonwn Sample + Inhibitor Solution	-	×μl	40–x μl	10 μΙ	50 μl

AMC Standard Curve for 96 Well Plate Assay

- Add the appropriate volume of AMC Standard Solution (20 μM 7-Amino-4-methylcoumarin) to each well (see Table 2) for a standard curve from 0.1–2 nmols of AMC per well.
- 2. Add the indicated volume (see Table 2) of $1 \times$ Assay Buffer to the appropriate wells.

Table 2. Scheme for AMC Standard Curve

nmol AMC per well	AMC Standard Solution (20 μM)	1× Assay Buffer
0	0 μΙ	100 μΙ
0.1	5 μl	95 μl
0.2	10 μΙ	90 μl
0.5	25 μl	75 μl
1.0	50 μl	50 μl
1.5	75 μl	25 μΙ
2.0	100 μΙ	0 μΙ

Calculation

Calculate the caspase 6 activity as nmol AMC released per minute per ml of unknown sample or mg protein of positive control.

v = volume of sample in ml

d = dilution factor

t = reaction time in minutes

FI_{1nmol} = fluorescence of 1 nmol AMC per well from the Standard Curve

 ΔFI_t = difference in fluorescence between time zero and time t minutes

Activity (nmol/min/ml) =
$$\frac{\Delta FI_t \times d}{FI_{1nmol} \times t \times v}$$

References

- Fernandes-Alnemri, T., et al., Cancer Res., 55, 2737-2742 (1995).
- 2. Bratton, S.B., *et al.*, Exp. Cell Res., **256**, 27-33 (2000).
- 3. LeBlanc, A., J. Biol. Chem., **274**, 23426-23436 (1999).
- 4. Stennicke, H.R., and G. Salvesen., J. Biol. Chem., **272**, 25719-25723 (1997).
- 5. Alnemri, E.M., J. Cell. Biochem., 64, 22-42 (1997).

ESS,LPG,MAM 04/07-1