Product Information

sigma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Cholesterol Oxidase from *Streptomyces* sp.

Catalog Number **C8649** Storage Temperature –20 °C

CAS RN 9028-76-6 EC 1.1.3.6 Synonyms: Cholesterol:oxygen oxidoreductase; 3β -hydroxy steroid oxidoreductase; CHOD; 3β -hydroxysteroid:oxygen oxidoreductase; cholesterol-O₂ oxidoreductase

Product Description

Cholesterol oxidase (CHOD) catalyzes the first step in cholesterol catabolism. Some non-pathogenic bacteria, such as *Streptomyces* are able to utilize cholesterol as a carbon source. Pathogenic bacteria, such as *Rhodococcus equi*, require CHOD to infect a host's macrophage.¹

CHOD is bifunctional. Cholesterol is initially oxidized to cholest-5-en-3-one in an FAD-requiring step. The cholest-5-en-3-one is isomerized to cholest-4-en-3-one.¹ The isomerization reaction may be partially reversible.² The activity of CHOD depends on the physical properties of membrane to which the substrate is bound.³ The net reaction is:

Cholesterol + O_2 Cholest-4-en-3-one + H_2O_2

Typically cholesterol oxidase is isolated from Gram-positive bacteria. CHOD from *Streptomyces*, *Cellulomonas*, and *Brevibacterium* have been found to be essentially equivalent analytically.⁴

CHOD is used to determine serum cholesterol.^{4,5} It is the second most widely used enzyme in clinical applications after glucose oxidase.⁶ CHOD also finds application in the microanalysis of steroids in food samples and in distinguishing 3-ketosteroids from 3β -hydroxysteroids.⁷

Transgenic plants expressing cholesterol oxidase are being investigated in the fight against the cotton boll weevil.⁸ Cholesterol oxidase has also been used as a molecular probe to elucidate cellular membrane structures ^{3,9}

Cholesterol oxidase is a monomeric flavoprotein containing FAD.¹ Molecular mass:¹⁰ 50 kDa (SDS-PAGE) Cofactor:¹⁰ FAD

pH Optimum:¹⁰ 6.0

pH Range:¹⁰ 6.0-8.0

Temperature optimum:¹⁰ 60 °C

Substrates: ⁷ cholesterol cholest-5-en-3β-ol-7-one dehydroisoandrosterone	estrone dihydrocholesterol pregnenolone
K_{M} (µM): Cholesterol ¹⁰ Pregnenolone ⁷	13.0 0.023
Dehydroepiandrosterone ¹¹	0.0275

Inhibitors:

Fenpropimorph:⁶ 50 mg/l, 50% inhibition Sarkosyl:¹² 1%, 56% inhibition

This product is purified from *Streptomyces* sp. and is supplied as a lyophilized powder containing ~60% protein (biuret), BSA, sodium cholate, and borate.

Specific activity: ≥20 units/mg protein

Unit definition: one unit will convert 1.0 $\mu mole$ of cholesterol to 4-cholesten-3-one per minute at pH 7.5 at 25 $^\circ C.$

Note: 4-cholesten-3-one may undergo isomerization.

CHOD is assayed spectrophotometrically in a 3.0 ml reaction mixture containing 38 mM potassium phosphate, 0.009% (w/v) o-dianisidine, 0.017% (w/v) cholesterol, 0.33% (v/v) TRITON[®] X-100, 10 units of peroxidase, and 0.01–0.02 unit of cholesterol oxidase.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

CHOD is soluble in cold 50 mM potassium phosphate buffer, pH 7.0. Prepare solutions immediately before use.

Storage/Stability

The product ships on dry ice and storage at -20 °C with desiccation is recommended. When stored at -20 °C, the product retains activity for at least two years.

A solution of CHOD in 50 mM potassium phosphate at pH 7.0 can lose 50% of its activity in 15 minutes at 60 $^{\circ}$ C.³

References

- Caldinelli, L., *et al.*, Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J. Biol. Chem., 280, 22572-81 (2005).
- Smith, A.G., and Brooks, C.J.W., The mechanism of the isomerization of cholest-5-en-3-one to cholest-4-en-3-one by cholesterol oxidase. Biochem. Soc. Trans., 5, 1088-90 (1977).
- Ahn, K-W, and Sampson, N.S., Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry, 43, 827-36 (2004).
- 4. Lolekha, P.H., *et al.*, Performance of four sources of cholesterol oxidase for serum cholesterol determination by the enzymatic endpoint method. Clin. Chim. Acta, **339**, 135-45 (2004).

- 5. Allain, C.C., *et al.*, Enzymatic determination of total serum cholesterol. Clin. Chem., **20**, 470-75 (1974).
- MacLachlan, J., *et al.*, Cholesterol oxidase: Sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol., **72**, 169-95 (2000).
- Toyama, M., *et al.*, Alteration of substrate specificity of cholesterol oxidase from *Streptomyces* sp. by site-directed mutagenesis. Protein Eng., **15**, 177-84 (2002).
- Corbin, D.R., *et al.*, Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiology, **126**, 1116-28 (2001).
- Pal, R., *et al.*, Effect of cholesterol concentration on organization of viral and vesicle membranes. J. Biol. Chem., **255**, 5802-06 (1980).
- Nishiya, Y., *et al.*, Improvement of thermal stability of *Streptomyces* cholesterol oxidase by random mutagenesis and a structural interpretation. Protein Eng., **10**, 231-35 (1997).
- Yue, Q.K., *et al.*, Crystal structure determination of cholesterol oxidase from *Streptomyces* and structural characterization of key active site mutants. Biochemistry, **38**, 4277-86 (1999).
- Doukyu, N., and Aono, R., Cloning, sequence analysis and expression of a gene encoding an organic solvent- and detergent-tolerant cholesterol oxidase of *Burkholderia cepacia* strain ST-200. Appl. Microbiol. Biotechnol., **57**, 146-52 (2001).

TRITON is a registered trademark of Union Carbide Corp.

SKM,RBG,JWM,MAM 12/07-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.