

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

N-SUCCINYL-ALA-ALA-PRO-PHE-P-NITROANILIDE

Product Number **S 7388** Storage Temperature –0 °C

CAS #: 70967-97-4 Synonyms: Suc-Ala-Ala-Pro-Phe-NA, Suc-AAPF-pNA

Product Description

Appearance: White to faint yellow powder Molecular Formula: $C_{30}H_{36}N_6O_9$ Molecular Weight: 624.6 $E_M (315 \text{ nm})^{1,2} = 14,000 \text{ M}^{-1} \text{ cm}^{-1}$ Melting point:¹ 184-187 °C

The synthesis of Suc-AAPF-pNA has been reported.¹

Suc-AAPF-pNA is a substrate for alpha-chymotrypsin¹⁻³ and fungal chymotrypsin-like serine protease⁴ (having a high k_{cat} and a low K_m), human leukocyte cathepsin G,^{5,6} subtilisin BPN' and its variants,⁷ and protease Q, a recently discovered subtilisin-like protease.⁸ A photometric assay for the determination of chymotrypsin activity in stool samples has been reported.³ It is a substrate for prostate-specific antigen (PA), which exhibits chymotrypsin-like activity.⁹ The substrate is not hydrolyzed by human leukocyte elastase.⁵

Suc-AAPF-pNA was used as the substrate to identify new proteolytic activity in yeast mutants.¹⁰ Peptidyl propyl *cis-trans* isomerase (PPlase)¹¹⁻¹⁵ catalyses the *cis-trans* isomerization of X-Pro peptide bonds. Independently discovered bovine cyclophilin, and the recombinant human form, have been shown to be identical to PPlase.¹⁶ FK-506 binding protein also exhibits PPlase activity.^{16,17} At equilibrium in solution approximately 88% of the substrate peptide has a *trans*-Ala-Pro bond with the remaining in the *cis* form.¹⁴⁻ ¹⁷ The *trans* form of the peptide is readily cleaved by chymotrypsin. The remaining *cis* form can be enzymatically converted to the *trans* form by PPlase.^{16,17}

Reconstitution of the dried substrate in LiCl/tetrahydrofuran shifts the *cis-trans* equilibrium to 5-40% *cis*-Ala-Pro isomer. In this solvent, the substrate has been used in an improved coupled assay for PPlase activity determination.¹⁶ Enzymatic cleavage of 4-nitroanilide substrates yields 4-nitroaniline (yellow color under alkaline conditions). Sigma uses the molar extinction coefficient (E_M) of 8,800 M⁻¹cm⁻¹ at 410 nm, pH 7.5, when using 4-nitroanilide substrates in enzyme assays.⁶ Other reaction conditions and molar extinction coefficients have been reported.^{3,10,18}

Storage/Stability

Suc-AAPF-pNA has a shelf life of 3 years when stored desiccated at -0 °C.

Preparation Instructions

Suc-AAPF-pNA is soluble in N,N-dimethylformamide (DMF) at 25 mg/ml producing a clear, light yellow solution. It is also soluble in 5% dimethylformamide (v/v) in buffer¹⁰ and in distilled water at 4 mg/ml.²

A 20 mM solution in dimethyl sulfoxide (DMSO) has been prepared and stored as a stock solution at 4 $^{\circ}C.^{6}$ Stock solutions in DMSO were diluted in 0.10 M HEPES buffer, pH 7.5, for the assay of cathepsin G.⁶

Suc-AAPF-pNA is soluble at 10 mM in 0.2 M Tris-HCl buffer, pH 8.0. In this buffer, a 1 mM solution of the substrate spontaneously hydrolyzes at a rate of about 0.1% per day at $4 \, {}^{\circ}C.^{1}$

It is recommended to prepare aqueous solutions of Suc-AAPF-pNA immediately prior to use. Aqueous solutions of the substrate were kept on ice during experiments.²

References

- 1. DelMar, E. G., et al., A sensitive new substrate for chymotrypsin. Anal. Biochem., **99**, 316-320, (1979).
- Bru, R., and Walde, P., Product inhibition of alphachymotrypsin in reverse micelles. Eur. J. Biochem., 199, 95-103, (1991).
- Kaspar, P., et al., New photometric assay for chymotrypsin in stool. Clin. Chem., **30**, 17531757, (1984).
- 4. Larcher, G., et al., Purification and characterization of a fibrinogenolytic serine proteinase from

Aspergillus fumigatus culture filtrate. FEBS Letters, 308, 65-69, (1992).

- 5. Nakajima, K., et al., Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the alpha 1-protease inhibitor reactive site. J. Biol. Chem., 254, 4027-32, (1979).
- 6. Barrett, A. J., Cathepsin G. Methods Enzymol., 80,
- **Pt. C,** 561-565, (1981). Brode, P. F., 3rd, et al., Subtilisin BPN' variants: 7. increased hydrolytic activity on surface-bound substrates via decreased surface activity. Biochemistry, 35, 3162-3169, (1996).
- Han, X. Q., and Damodaran, S., Biochem. Biophys. 8. Res. Commun., Subtilisin BPN' variants: increased hydrolytic activity on surface-bound substrates via decreased surface activity. 240, 839-843, (1997).
- Watt, K. W., et al., Human prostate-specific 9. antigen: structural and functional similarity with serine proteases. Proc. Natl. Acad. Sci. U.S.A., 83, 3166-3170 (1986).
- 10. Achstetter, T., et al., New proteolytic enzymes in veast. Arch. Biochem. Biophys., 207, 445-454, (1981).
- 11. Fischer, G., et al., Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides Biomed. Biochim. Acta., 43, 1101-1111, (1984).
- 12. Bergsma, D. J., et al., The cyclophilin multigene family of peptidyl-prolyl isomerases.

Characterization of three separate human isoforms. J. Biol. Chem., 266, 23204-23214 (1991).

- 13. Sheldon, P. S., and Venis, M. A., Purification and characterization of cytosolic and microsomal cyclophilins from maize (Zea mays). Biochem. J., 315, 965-970, (1996).
- 14. Lang, K., and Schmid, F. X., Protein-disulphide isomerase and prolyl isomerase act differently and independently as catalysts of protein folding. Nature, 331, 453-455, (1988).
- 15. Kakalis, L. T., and Armitage, I. M., Solution conformation of a cyclophilin-bound proline isomerase substrate. Biochemistry, 33, 1495-1501, (1994).
- 16. Kofron, J. L., et al., Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry, 30, 6127-6134, (1991).
- 17. Siekierka, J. J., et al., A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 341, 755, (1989).
- 18. Erlanger, B. F., et al., The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys., 95, 271278, (1961).

JWM 5/29/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.