SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

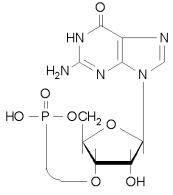
Product Information

cGMP Enzyme Immunoassay Kit, Direct

Catalog Number **CG200** Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description


The EIA Direct cyclic GMP kit is a competitive immunoassay for the quantitative determination of cyclic GMP in samples treated with 0.1 M HCI. The kit uses a polyclonal antibody to cGMP to bind, in a competitive manner, the cGMP in the sample or an alkaline phosphatase molecule that has cGMP covalently attached to it. Samples or standards, alkaline phosphatase conjugate, and antibody are simultaneously incubated at room temperature in a secondary antibody coated multiwell plate. The excess reagents are then washed away and substrate is added. After a short incubation time the enzyme reaction is stopped and the yellow color generated read on a multiwell plate reader at 405 nm. The intensity of the bound yellow color is inversely proportional to the concentration of cGMP in either the standards or the samples. The measured optical density is used to calculate the concentration of cGMP. For further explanation of the principles and practice of immunoassays please see the excellent books by Chard or Tijssen.1.

The cGMP Direct EIA may be used to assay cGMP samples that have been treated with hydrochloric acid to stop endogenous phosphodiesterase activity. Samples in this matrix can be read directly without evaporation or further treatment. Samples with very low levels of cGMP may be acetylated. Acetylation of the samples increases the sensitivity of the assay.

Guanosine 3',5'-cyclic monophosphate (cyclic GMP; cGMP) was identified in 1963.³ It has been shown to be present at levels typically 10 to 100-fold lower than cAMP in most tissues and is formed by the action of the enzyme guanylate cyclase on GTP. It is involved in a number of important biological reactions. Some hormones, such as acetylcholine, insulin and oxytocin, as well as certain other chemicals like serotonin and histamine cause an increase in cGMP levels.^{4,5}

Stimulators of guanylate cyclase such as the vasodilators nitroprusside, nitroglycerin, sodium nitrate, and nitric oxide (NO) also stimulate cGMP levels.⁶ Peptides, such as atrial natriuretic peptide (ANP) that relax smooth muscle, also increase cGMP concentrations.⁷ cGMP has been confirmed as a second messenger for ANP.⁸ NO can be synthesized from L-arginine and diffuse through cell membranes.^{9,10} The interaction of NO with guanylate cyclase allows cGMP to act as a third messenger in some cells.¹¹

Cyclic GMP

Components

Sufficient reagents are supplied for 96 assays

Goat Anti-Rabbit IgG Coated 96 Well Multiwell Plate - break-apart strips coated with goat antibody specific to rabbit IgG (Catalog Number M3683)	1 each
cGMP-Alkaline Phosphatase Conjugate A blue solution of alkaline phosphatase conjugated with cGMP (Catalog Number C6601	5 ml)
cGMP EIA Antibody Rabbit Anti-cGMP	5 ml

A yellow solution of a polyclonal rabbit antibody to cGMP (Catalog Number C6351)

0.1 M Hydrochloric Acid 0.1 M HCl in water Caution: acid (Catalog Number H5159)	30 ml
Neutralizing Reagent (Catalog Number N7533)	6 ml
Wash Buffer Concentrate Tris buffered saline containing detergents and sodium azide as preservative. (Catalog Number W1265)	30 ml
Cyclic GMP Standard A solution of 5,000 pmole/ml cGMP (Catalog Number C6851)	0.5 ml
<i>p</i> -Nitrophenyl Phosphate Substrate Solution A ready-to-use solution of <i>p</i> -nitrophenyl phospha buffer (Catalog Number N7408)	20 ml ate in
Stop Solution A solution of trisodium phosphate in water Keep tightly capped. Caution: caustic (Catalog Number S2436)	5 ml
Triethylamine Caution: lachrymator, harmful vapor, flammable (Catalog Number T7441)	2 ml
Acetic Anhydride Caution: lachrymator, corrosive, flammable (Catalog Number A5344)	1 ml
Plate Sealer (Catalog Number P2107)	1 each
Equipment and Reagents Required but Not Provided • Deionized or distilled water. No difference in	assay

- Deionized or distilled water. No difference in assa results is seen with distilled water.
- Precision pipettes for volumes between 5 μl and 1,000 μl
- Repeater pipettes for dispensing 50 μl and 200 μl
- Disposable beakers for diluting buffer concentrates
- Graduated cylinders
- A multiwell plate shaker
- Adsorbent paper for blotting
- Multiwell plate reader capable of reading at 405 nm, preferably with correction between 570 and 590 nm.
- 5 Cycle Log-Log Paper

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, diagnostic, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Caution: Some components of this kit contain chemicals that are acidic, caustic, lachrymators, corrosive, and flammable. Use with caution and wear suitable protection. Some kit components contain azide, which may react with lead or copper plumbing. When disposing of reagents always flush with large volumes of water to prevent azide build-up.

Preparation Instructions

Reagent Preparation

<u>Note</u>: Standards can be made up in either glass or polypropylene tubes. Avoid polystyrene tubes.

- cGMP Standard (Non-Acetylated Version) Allow the Cyclic GMP Standard (5,000 pmole/ml) to warm to room temperature. Label five 12 × 75 mm tubes 1 through 5. Pipette 900 µl of 0.1 M HCl into tube 1 and 800 µl into tubes 2–5. Add 100 µl of the 5,000 pmole/ml Cyclic GMP Standard to tube 1. Vortex thoroughly. Add 200 µl of tube 1 to tube 2 and vortex thoroughly. Continue this for tubes 3 through 5. The concentration of cGMP in tubes 1 through 5 will be 500, 100, 20, 4, and 0.8 pmole/ml, respectively. Diluted standards should be used within 60 minutes of preparation.
- Acetylation Reagent Prepare the Acetylation Reagent by adding 0.5 ml of acetic anhydride to 1 ml of triethylamine. Use the prepared reagent within 60 minutes of preparation.
- 3. cGMP Standard (Acetylated Version) Allow the Cyclic GMP Standard (5,000 pmole/ml) to warm to room temperature. Label five 12×75 mm tubes 1 through 5. Pipette 990 µl of 0.1 M HCl into tube 1 and 800 µl of 0.1 M HCl into tubes 2–5. Add 10 µl of the 5,000 pmole/ml Cyclic GMP Standard to tube 1. Vortex thoroughly. Add 200 µl of tube 1 to tube 2 and vortex thoroughly. Continue this for tubes 3 through 5.

Label one 12×17 mm tube as the Zero Standard/ NSB tube. Pipette 1 ml of 0.1 M HCl into this tube for use in Assay Procedure, step 3. The concentration of cGMP in tubes 1 through 5 will be 50, 10, 2, 0.4, and 0.08 pmole/ml, respectively. Acetylate all standards and samples by adding 10 μ l of the Acetylation Reagent for each 200 μ l of standard or sample. Add the reagent directly to the samples and vortex for 2 seconds. Add 50 μ l of the Acetylation Reagent to the Zero Standard/NSB tube and use in Assay Procedure, step 3 (Failure to acetylate the NSB and Zero will result in inaccurate B/Bo values). Use the acetylated standards or samples within 30 minutes.

 1× Wash Buffer – Prepare 1× Wash Buffer by diluting 10 ml of the Wash Buffer Concentrate with 90 ml of deionized water. This can be stored at room temperature for 3 months.

Sample Handling

The Direct cGMP Enzyme Immunoassay is compatible with cGMP samples that have been treated with hydrochloric acid to stop endogenous phosphodiesterase activity. Samples in this matrix can be read directly without evaporation or further treatment. If samples with very low levels of cGMP are to be measured, reagents are provided to acetylate samples and standards. Acetylation of the samples increases the sensitivity of the assay. Please refer to references 12–18 for further methods of extraction of cGMP from samples.

Plasma samples should be drawn into EDTA tubes. Plasma samples should be adjusted to make the plasma 0.1 M in hydrochloric acid by the addition of ~10 μ l of **concentrated** hydrochloric acid per 1 ml of plasma. The plasma should be incubated for 15 minutes and then centrifuged at 600 × *g* at room temperature. The supernatants can then be diluted in the 0.1 M HCl provided with the kit. In experiments with plasma samples diluted greater than 1:2 in 0.1 M HCl, recoveries of cGMP of 94% were seen, with a range from 82–103%. In experiments with serum samples diluted greater than 1:2 in 0.1 M HCl, recoveries of cGMP of 101% were seen, with a range from 87–118%.

Tissue samples should be frozen in liquid nitrogen. Samples frozen in liquid nitrogen should be ground to a fine powder under liquid nitrogen in a stainless steel mortar. After the liquid nitrogen has evaporated, weigh the frozen tissue and homogenize in 10 volumes of 0.1 M HCI. Centrifuge at $600 \times g$ at room temperature. The supernatants can then be diluted in the 0.1 M HCI provided with the kit. Cells grown in tissue culture medium can be treated with 0.1 M HCl after first removing the medium. Incubate for 10 minutes and visually inspect the cells to verify cell lysis. If adequate lysis has not occurred incubate for a further 10 minutes and inspect. Centrifuge at $600 \times g$ at room temperature and use the supernatant directly in the assay. Cyclic GMP in the medium can be measured after treating the supernatant medium with concentrated hydrochloric acid as described for plasma by treating 1 ml with 10 µl of **concentrated** acid. Centrifuge at $600 \times g$ at room temperature. The supernatants can then be used directly in the assay. In experiments with tissue culture medium samples diluted greater than 1:2 in 0.1 M HCl, recoveries of cGMP of 98% were seen.

Storage/Stability

The kit ships on wet ice and storage at -20 °C is recommended.

Procedure

Do not mix components from different kit lots.

The activity of the alkaline phosphatase conjugate is dependent on the presence of Mg^{2+} and Zn^{2+} ions. The activity of the conjugate is affected by concentrations of chelators (>10 mM) such as EDTA and EGTA.

The performance of this kit has been tested with a variety of samples; however, it is possible that high levels of interfering substances may cause variation in assay results.

Allow all reagents to warm to room temperature for at least 30 minutes before opening.

Standards can be made up in either glass or polypropylene tubes. Avoid polystyrene tubes.

Keep unused plate strips sealed in bag with desiccant.

Pre-rinse the pipette tip with the reagent and use fresh pipette tips for each sample, standard, and reagent.

Pipette standards and samples to the bottom of the wells.

Add the reagents to the side of the well to avoid contamination.

This kit uses break-apart multiwell strips, which allow the user to measure as many samples as desired. Unused wells must be kept desiccated at 2–8 °C in the sealed foil bag. The wells should be used in the frame provided.

Care must be taken to **minimize contamination by endogenous alkaline phosphatase.** Contaminating alkaline phosphatase activity, especially in the substrate solution, may lead to high blanks. Care should be taken not to touch pipette tips and other items that are used in the assay with bare hands.

Assay Procedure

Allow all reagents to warm to room temperature for at least 30 minutes before opening.

All standards and samples should be run in duplicate.

If the Acetylated Version of the kit is to be run, acetylate all standards and samples by adding 10 μ l of the Acetylation Reagent for each 200 μ l of standard or sample. Add 50 μ l of the Acetylation Reagent to the Zero Standard/NSB tube (refer to Reagent Preparation, step 3) and use in steps 3 and 6 in this procedure. Add the reagent directly to the samples and vortex for 2 seconds. Use the acetylated standards or samples within 30 minutes.

- 1. Determine the number of wells to be used and put any remaining wells with the desiccant back into the foil pouch and seal. Store unused wells at 2-8 °C.
- 2. Pipette 50 μ l of the Neutralizing Reagent into each well, except the TA and Blank wells.
- 3. Pipette 100 μ l of the 0.1 M HCl into the NSB and the Bo (0 pmole/ml Standard) wells.

- 4. Pipette 100 μl of Standards 1 through 5 into the appropriate wells.
- 5. Pipette 100 μl of the samples into the appropriate wells.
- 6. Pipette 50 μ l of the 0.1 M HCl into the NSB wells.
- Pipette 50 µl of blue cGMP-Alkaline Phosphatase Conjugate into each well except the TA and Blank wells.
- Pipette 50 µl of yellow cGMP EIA Antibody into each well, except the Blank, TA (total activity), and NSB (non specific binding) wells. <u>Note</u>: Every well used should be **Green** in color except the NSB wells which should be **Blue**. The Blank and TA wells are empty at this point and have no color.
- Incubate the plate at room temperature for 2 hours on a plate shaker at ~500 rpm. The plate may be covered with the plate sealer provided, if so desired.
- 10. Empty the contents of the wells and wash by adding 200 μ l of 1× Wash Buffer to every well. Repeat the wash 2 more times for a total of **3** Washes.
- After the final wash, empty or aspirate the wells, and firmly tap the plate on a lint free paper towel to remove any remaining wash buffer. <u>Note</u>: Prior to addition of substrate, ensure there is no residual Wash Buffer in the wells. Any remaining Wash Buffer in the wells may cause variation in assay results.
- 12. Add 5 μ l of the blue cGMP-Alkaline Phosphatase Conjugate to the TA wells.
- Add 200 μl of the *p*-Nitrophenyl Phosphate Substrate Solution to every well. Incubate at room temperature for 1 hour without shaking.
- 14. Add 50 μl of Stop Solution to every well. This stops the reaction and the plate should be read immediately.
- 15. Blank the plate reader against the Blank wells, read the optical density at 405 nm, preferably with correction between 570 and 590 nm. If the plate reader cannot be blanked against the Blank wells, manually subtract the mean optical density of the blank wells from all readings.

Results

Several options are available for the calculation of the concentration of cGMP in the samples. It is recommended the data be handled by an immunoassay software package utilizing a weighted 4 parameter logistic curve fitting program such as "AssayZap" (www.biosoft.com). If this type of data reduction software is not readily available, the concentration of cGMP can be calculated as follows:

 Calculate the average Net Optical Density (OD) bound for each standard and sample by subtracting the average NSB OD from the average OD bound:

> Average Net OD = Average Bound OD – Average NSB OD

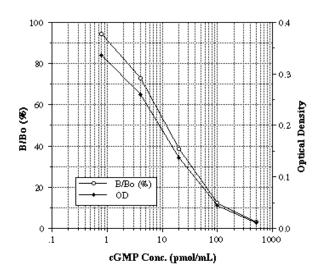
 Calculate the binding of each pair of standard wells as a percentage of the maximum binding wells (Bo), using the following formula:

Percent Bound = $\underbrace{Net OD}_{Net Bo OD} \times 100$

 Using the Logit-Log paper plot Percent Bound (B/Bo) versus Concentration of cGMP for the standards. Approximate a straight line through the points. The concentration of cGMP in the unknowns can be determined by interpolation.

Product Profile

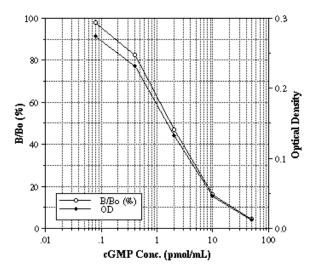
Typical Results


The results shown below are for illustration only and **should not** be used to calculate results from other assays.

Sample_	Non-Acetyla <u>Net OD</u>	ted Version <u>Percent</u> <u>Bound</u>	<u>cGMP</u> (pmole/ml)
Blank OD	(0.229)		
TA	0.389		
NSB	-0.002	0%	
Bo	0.356	100%	0
S1	0.011	3.09%	500
S2	0.044	12.36%	100
S3	0.137	38.48%	20
S4	0.259	72.75%	4
S5	0.336	94.38%	0.8
Unknown1	0.282	79.21%	2.78
Unknown 2	0.059	16.57%	71.84

	Acetylate	d Version	
Sample	Net OD	Percent_	<u>cGMP</u>
		<u>Bound</u>	<u>(pmole/ml)</u>
Blank OD	(0.152)		
TA	0.381		
NSB	-0.001	0%	
Bo	0.281	100%	0
S1	0.012	4.28%	50
S2	0.046	16.22%	10
S3	0.132	46.88%	2
S4	0.232	82.53%	0.4
S5	0.275	98.04%	0.08
Unknown1	0.074	20.79%	5.14
Unknown 2	0.251	70.50%	0.24

<u>Typical Standard Curves</u> These curves **must not** be used to calculate cGMP concentrations; each user must run a standard curve for each plate and version used.


Non-Acetylated Version

Typical Quality Control Parameters

Total Activity Added %NSB %Bo/TA Quality of Fit	= = =	0.389 × 10 = 3.89 0.0% 9.15% 0.99999
20% Intercept	=	54.2 pmole/ml
50% Intercept	=	10.8 pmole/ml
80% Intercept	=	2.1 pmole/ml

Acetylated Version

Typical Quality Control Parameters

Total Activity Added	=	0.381 × 10 = 3.81
%NSB	=	0.0%
%Bo/TA	=	7.38%
Quality of Fit	=	0.99999
20% Intercept	=	7.0 pmole/ml
50% Intercept	=	1.6 pmole/ml
80% Intercept	=	0.3 pmole/ml

Specificity

Performance Characteristics

The following parameters for this kit were determined using the guidelines listed in the National Committee for Clinical Laboratory Standards (NCCLS) Evaluation Protocols.¹⁹

Sensitivity

Sensitivity was calculated by determining the average optical density bound for sixteen (16) wells run as Bo, and comparing to the average optical density for sixteen (16) wells run with Standard 5 in the Non-Acetylated or with Standard 5 in the Acetylated version. The detection limit was determined as the concentration of cGMP measured at two (2) standard deviations from the zero along the standard curve.

Non-Acetylated Version

Mean OD for Bo = 0.457 ± 0.017 (3.8%). Mean OD for Standard 5 = 0.412 ± 0.024 (5.8%). Delta Optical Density (0–0.8 pmole/ml) = 0.457 - 0.412= 0.045. 2 SD's of Bo = 0.034

Sensitivity = $\frac{0.034}{0.045}$ × 0.8 pmole/ml = **0.604 pmole/ml** 0.045

Acetylated Version

Mean OD for Bo = 0.282 ± 0.007 (2.5%). Mean OD for Standard 5 = 0.263 ± 0.005 (2.7%). Delta Optical Density (0–0.08 pmole/ml) = 0.282 - 0.263 = 0.019. 2 SD's of Bo = 0.014Sensitivity = 0.014×0.08 pmole/ml = 0.059 pmole/ml 0.019

Linearity

Non-Acetylated Version

A sample containing 96.0 pmole/ml cGMP was serially diluted 7 times 1:2 in the 0.1 M HCl supplied in the kit and measured in the assay. The data was plotted graphically as actual cGMP concentration versus measured cGMP concentration. The line obtained had a slope of 1.000 with a correlation coefficient of 0.999.

Acetylated Version

A sample containing 16.0 pmole/ml cGMP was serially diluted 7 times 1:2 in the 0.1 M HCl supplied in the kit and measured in the Acetylated version of the assay. The data was plotted graphically as actual cGMP concentration versus measured cGMP concentration. The line obtained had a slope of 1.001 with a correlation coefficient of 0.998.

Precision

Intra-assay precision was determined by taking samples containing low, medium, and high concentrations of cGMP and running these samples multiple times (n=24) in the same assay. Inter-assay precision was determined by measuring three samples with low, medium, and high concentrations of cGMP in multiple assays (n=8).

The precision numbers listed below represent the percent coefficient of variation for the concentrations of cGMP determined in these assays as calculated by a 4 parameter logistic curve fitting program.

	Non-Acetylated Version		
	cGMP	Intra Assay	Inter Assay
	(pmole/ml)	(%CV)	(%CV)
Low	1.85	4.4	
Medium	9.88	7.9	
High	115.28	6.6	
Low	2.14		6.0
Medium	8.53		9.9
High	96.98		6.9

Low Medium High	Ace cGMP (pmole/ml) 0.58 1.38 5.38	tylated Version Intra Assay (%CV) 9.5 3.6 3.5	Inter Assay (%CV)
Low	0.349		11.0
Medium	3.51		8.4
High	10.29		4.6

Cross Reactivities

The cross reactivities for a number of related compounds were determined by using the EIA cGMP kit, Catalog Number CG201, which uses the same antibody and conjugate as this kit. Potential cross reactants were dissolved in the kit Assay Buffer at concentrations from 500,000 to 500 pmole/ml. These samples were then measured in the cGMP assay and the measured cGMP concentration at 50% B/Bo calculated. The % cross reactivity was calculated by comparison with the actual concentration of cross reactant in the sample and expressed as a percentage.

Compound	Cross Reactivity
cGMP	100%
GMP	<0.001%
GTP	<0.001%
cAMP	<0.001%
AMP	<0.001%
ATP	<0.001%
cUMP	<0.001%
CTP	<0.001%

Sample Recoveries

cGMP concentrations were measured in a variety of different samples including tissue culture media, human saliva, serum, and urine. For all of the samples, cGMP was spiked into the undiluted samples, which were diluted with the 0.1 M HCl supplied with the kit and then assayed in the kit. Recovery values were not obtained with urine samples because the endogenous levels of cGMP are so high. The following results were obtained:

Non-Acetylated Version		
<u>Sample</u>	% Recovery	Recommended
		Dilution*
Tissue Culture Media	95.9	none
Human Serum	108.4	none
Human EDTA Plasma	96.8	none

Non-Acetylated Version		
<u>Sample</u>	% Recovery	Recommended
		Dilution*
Tissue Culture Media	86.8	none
Human Serum	89.4	none
Human EDTA Plasma	70.3	none

* See Sample Handling instructions for details

References

- Chard , T. in "An Intro. to Radioimmunoassay & Related Tech.", 4th Ed., Elsevier, Amsterdam (1990).
- Tijssen P., in "Practice & Theory of Enz. Immunoassays", Elsevier, Amsterdam (1985).
- Ashman, DF, et al. Biochem. Biophys. Res. Comm., **11**, 330-4 (1963).
- Waldman, S.A., and Murad, F., Pharmacol. Revs., 39, 163-197 (1987).
- Tremblay, J., et al. Adv. 2nd Messanger & Phosphoprotein Res., 22, 319-383 (1988).
- Collier, J., and Vallance, P., Trends Pharmacol. Sci., **10**, 427-431 (1989).
- Sarcevic, B., et al, J. Biol. Chem., 264, 20648-20654 (1989).
- 8. Chinkers, M., et al. Nature, 338, 78-83 (1989).
- Moncada, S., et al. Biochem. Pharmacol., 38, 1709-1715 (1989).
- 10. Ignarro, L.J., Pharmacol. & Toxicol., 67, 1-7 (1990).
- 11. Bos, E.S., et al, J. Immunol., **2**, 187-204 (1981).
- Yamamoto, I., and Tsuji, J., Immunopharm., 3, 53-59 (1981).
- Collins, W.P., and Hennam, J.F., In: Molecular Aspects of Medicine, Baum, H. & Cergeley, J. (eds.) Pergamon, England, Vol. 1, pg 3 (1976).
- 14. Gettys, T.W., et al. 2nd Messengers & Phosphoprot., **13**, 37 (1990).
- 15. Gettys, T.W., et al. J. Biol. Chem., **266**, 15949 (1991).
- 16. Steiner, A.L., Meth. in Enz., 38, 96 (1974).
- 17. Farmer, R.W., Harrington, C.A., and Brown, D.H., Anal. Biochem., **64**, 455 (1975).
- Fausto, H., and Butcher, F.R., Biochim. Biophys. Acta, **428**, 702 (1976).
- 19. NCCLS Evaluation Protocols, SC1, NCCLS, Villanova, PA, 19085 (1989).

KAA,SG,LPG,AC,MAM 04/10-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.