

PhotoGel®-IRG, Methacrylated Gelatin Hydrogel Kit

3D CC Hydrogel

Cat. # CC323

pack size: 1 Kit

FOR RESEARCH USE ONLY.
NOT FOR USE IN DIAGNOSTIC PROCEDURES.
NOT FOR HUMAN OR ANIMAL CONSUMPTION.

Data Sheet

page 1 of 2

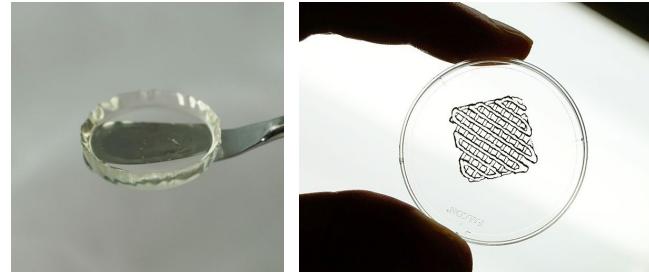
Background

3D cell culture, including bioprinting, allows for the creation of more physiological cell models by allowing cells to simultaneously interact with integrins on all cell surfaces, resulting in the activation of specific signaling pathways not activated in traditional 2D cell culture methods. Hydrogels are water swollen polymers that allow for the culture of cells in 3-dimensions and can have profound effects on cellular development, differentiation, migration, and function. New areas of tissue engineering such as 3D bioprinting, have utilized UV photocrosslinked methacrylated hydrogel biomaterials (PEGMA, GelMA, HAMA and ColMA etc.) to encapsulate cells to make printable bioinks.

The PhotoGel®-IRG, Methacrylated Gelatin Hydrogel Kit is based upon purified porcine gelatin methacrylate (GelMA), which when photocrosslinked provides a native-like 3D environment for cells. Gelatin derived from denatured collagen retains many natural cell binding motifs such as RGD and MMP sites. In addition to porcine gelatin methacrylate, the kit includes the photoinitiator Irgacure 2959 for users to easily fine tune their photocrosslinking experiments (i.e. altering hydrogel stiffness or gelling speeds). Gelatin methacrylate is produced from porcine, type A, 300 bloom gelatin. Gelatin macromers containing primary amino groups were reacted with methacrylic anhydride (MA) to add methacrylate pendant groups. The gelatin methacrylate achieves a degree of substitution of >70% for maximum crosslinking and range of stiffness.

Kit Components

The PhotoGel®-IRG, Methacrylated Gelatin Hydrogel Kit (CC323) contains:


- 1) CC323-1 (Store at 2-8°C): Irgacure Photoinitiator, 1 X 100 mg (CS226351).
- 2) CC323-2 (Store at -20°C): Methacrylated Gelatin, 2 X 500 mg (CS226405).

Quality Control

Appearance: Lyophilized powder
Gelatin Content: \geq 1 gram
Sterility (USP modified): No Growth
pH: 6.0-8.0
Grafting Efficiency: \geq 75%
Cell Compatibility: > 70% Cell Viability

References

- 1) Mikos, A, et al. A high-throughput approach to compare the biocompatibility of candidate bioink formulations. *Bioprinting* Volume 17, March 2020.

Figure 1. 3D printing of PhotoGel® Methacrylated Gelatin Hydrogels can be used as native bioinks for tissue engineering bioprinting applications.

Instructions for Use

Note: Employ aseptic practices to maintain the sterility of the product throughout the preparation and handling of the gelatin and other solutions. The following instructions are for a 10% gelatin methacrylate solution. Recommended concentrations are 5-20%.

1. Warm 10 mL of sterile warm 1X PBS or 1X cell culture media to >60°C.
2. Add the 5 mL of the warmed solution to the amber vial containing 500 mg of lyophilized gelatin methacrylate.
3. Mix on a shaker table or rotator plate until fully solubilized. Keep warm (>37°C) if possible (eg. place your rotator in an incubator) to help with full solubilization.
4. Add 1 mL of neat methanol to the small amber vial of photoinitiator containing 100 mg of Irgacure, and vortex. *Note: Irgacure in solution has a shelf life of 2 weeks. Only dissolve required amount of Irgacure powder in a 10% solution.*
5. Calculate the volume of the photoinitiator required by multiplying the total volume of gelatin required by 0.01. (If you want to add it to the 5 mL directly, you would add 0.05 mL of irgacure).
6. Add the calculated volume of photoinitiator to the required volume of gelatin solution and mix thoroughly.
7. Add your cells to the gelatin/photoinitiator solution.
8. Dispense your gelatin/photoinitiator/cell solution into the desired dish (ie. 6-well plate, 48-well plate).
9. For UV-crosslinking, place printed structure directly under a 365 nm UV light crosslinking source. *Note: Longer exposure allows more crosslinking, though each cell type withstands different degrees of UV light and free radicals (generated by the photoinitiator) that mediate crosslinking. Any excess material can be refrigerated and stored. The material will gel. Warm back up to >30°C for it to become liquid again.*

PhotoGel® is a registered trademark of Advanced BioMatrix, Inc.

 antibodies Multiplex products biotools cell culture enzymes kits proteins/peptides siRNA/cDNA products

Please visit www.milliporesigma.com for additional product information, test data and references

MilliporeSigma, 28820 Single Oak Drive, Temecula, CA 92590, USA 1-800-437-7500

Technical Support: T: 1-800-MILLIPORE (1-800-645-5476) • F: 1-800-437-7502

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures. Not for human or animal consumption. Purchase of this Product does not include any right to resell or transfer, either as a stand-alone product or as a component of another product. Any use of this Product for purposes other than research is strictly prohibited.

MilliporeSigma®, the M mark, Upstate®, Chemicon®, Linco® and all other registered trademarks, unless specifically identified above in the text as belonging to a third party, are owned by Merck KGaA, Darmstadt, Germany. Copyright ©2008-2020 Merck KGaA, Darmstadt, Germany. All rights reserved.

We Buy 100% Certified
Renewable Energy