Panorama[™] Human Protein Functional Array-Signal Transduction

Technical Bulletin

Catalog Number **HPFM4**

Panorama[™] Signal Transduction Array

Table of Contents

Introduction	1
Panorama Array Technology	1
Kit Contents	1
Storage Conditions	2
General Recommendations	2
Kit Components	3
Protein Arrays	
BCR-peptide-Cy5	
Anti-c-Myc-Cy3	4
Control Assays	4
Protocol for Peptide Binding Assay	4
Protocol for the Cy3-anti-c-Myc Binding Assay	5
Scanning	6
Data Analysis	6
Data Normalization	
Standard Normalization	7
Guidelines for Different Assay Types	7
General Recommendations	
Phosphorylation on Arrays Using Exogenous Kinases	8
Assays Utilizing Radioactive ATP	8
DNA Binding Assays	8
Antibody Binding Assays	8
Peptide Binding Assays	
Protein:Protein Interactions	
Post-translational Modification	9
Troubleshooting Guide	10
Appendices	11
Appendix A: Protein Array Orientation	11
Appendix B: Panorama Signal Transduction Array Content	11
Control and Marker Proteins	19
Dilution Series	19
References	20
Relevant Patents	20

Introduction

The Panorama[™] Signal Transduction Array contains a set of 259 human signaling proteins and specific controls. These proteins are intimately involved in many cell processes such as cell proliferation, cell differentiation and cell death.

All proteins on array have been chosen because of their involvement in signaling networks. The majority of proteins were selected using GO-terms according to the Gene Ontology database.¹

Panorama Array Technology

The signal transduction proteins were expressed in Sf9 insect cells and affinity purified directly on the array via their biotin tag. As a result of the proprietary BCCP (biotin-carboxyl carrier protein) tagging technology, all signal transduction proteins are presented in a similar orientation while providing a 50 Å spacer arm to maximize the opportunity for sites to interact with binding partners.^{2,3,4} Open reading frames (ORFs) are cloned in frame with two tag sequences at the C-terminus encoding the BCCP and the c-Myc epitope (EQKLISEEDL), which can be used to visualize the proteins on the array. To ensure fidelity, clones are sequence-verified immediately prior to expression in Sf9 insect cells.

During expression, the BCCP tag is biotinylated only when it is correctly folded.⁵ All expressed proteins are assayed by Western blot analysis to determine molecular weight, confirm biotinylation, and establish the full-length protein has been expressed.

Biotinylation of BCCP occurs at a single surface-exposed lysine residue approximately 50 Å from the attachment to the fusion protein. The BCCP-biotin-fusion proteins are captured on the array surface via a streptavidin-biotin interaction with BCCP acting as a spacer between the array substrate and the fusion protein. BCCP-biotin provides a single-point high-affinity anchor so that all proteins on the array are in the same orientation. As a result, the arrayed proteins are not sterically or functionally hindered by multiple non-specific interactions with the surface and are freely available to interact with biochemical probes presented in solution, thereby minimizing non-specific interactions.⁶

Panorama functional protein arrays are fabricated on borosilicate glass slides that display high chemical resistance, low auto-fluorescence and excellent surface uniformity. The slides are cut by a laser to minimize particle contamination. The slides are then coated with streptavidin that is covalently attached to a permeable three-dimensional coating comprised of a cross-linked matrix with low non-specific protein-binding. The format is compatible with conventional microarray scanners and instrumentation.

Kit Contents

Product	Cat. No.	Size
Panorama Signal Transduction Array	P4249	2 each
BCR-peptide-Cy5	B2936	1 each
Anti-c-Myc-Cy3	C6594	1 each
Functional Assay Buffer	C0492	150 mL
Assay Buffer	A1105	150 mL
CHAPS	C3023	1 g
Bovine Serum Albumin (BSA)	A3059	1 imes 200 mg
1M Dithiothreitol (DTT)	646563	2 ampoules
quadriPERM [®] culture vessel	Z376760	2 each

Product	Cat. No.	Size
Hybri-slips™	H0784	10 each
Pap Jar	P8123	4 each
50 mL Conical Centrifuge Tubes	C8296	2 each
Signal Transduction Analysis Workbook and GAL File (CD)	S4571	1 each

Materials Required But Not Provided

The following materials are not included in the protein array kit, but are required to perform the peptide and antibody binding assays described in this technical bulletin.

- High-purity water
- Powder-free gloves
- Microarray scanner or fluorescence imager
- Microarray analysis software
- Forceps (fine and blunt-ended)
- Centrifuge
- Shaking incubator
- Orbital shaker
- Lint free tissue paper (e.g., Kimwipes)

Storage Conditions

Proteins on the array are sensitive to heat and oxidation. To preserve protein activity, the arrays are shipped on dry ice in screw-capped Pap jars and filled with 30 mL of storage buffer containing DTT and glycerol.

Upon receipt, store the kit at –20 °C until use. The storage buffer for the protein arrays may be frozen upon arrival due to the dry ice used for shipping, but will thaw gently when placed at –20 °C. Arrays must not be moved during thawing. Pap jars should not be opened until the storage buffer has thawed completely. It is recommended that tubes are not opened until ready for use.

General Recommendations

- a. The array area covers most of the slide surface; therefore, extreme care is needed in handling the arrays. Remove the arrays from their storage buffer by the labeled end using blunt-ended forceps. Do not touch the unprotected portion of the slide surface.
- b. Keep arrays in ice-cold buffer unless higher temperatures are required for assays.
- c. Keep the array label-side upwards when lying flat. To remove components of the storage buffer, wash arrays as indicated in the protocols.
- d. Cover arrays completely in assay buffer/reagents to prevent them from drying out during the assay.
- e. If using critical volume sample, use Hybri-slips provided with the kit. **Do not** use glass cover slips as they may sequester the sample. Pipette 50 µL of sample carefully onto the middle of the slide and lower the cover slip gently onto the surface using fine forceps.

If sample is not limited and larger volume incubations are possible, perform incubations in plastic quadriPERM containers provided with the kit. Use sufficient sample solution to immerse the arrays. Assays in 2–5 mL of probing solutions yield the best results.

- f. Protect fluorescent probes such as Cy-dye-labeled ligands from light during the assay. During assay cover dishes with aluminum foil.
- g. When compatible with assay conditions and detection methods, include 20% glycerol and 0.1% Triton X-100 in buffers.
- h. Signal Transduction arrays have been pre-blocked with 2% BSA during production. Additional blocking with non-fat milk powder or other commonly used blocking agents may be necessary.
- i. If a high degree of background speckling is observed after processing, use de-speckling algorithms that are present in most commercially available microarray analysis software. Please note that speckling affects the appearance only and does not materially affect the data generated.

Kit Components

Protein Arrays

Each Signal Transduction array contains 259 wild type signal transduction proteins, numerous control features, and 48 alignment markers in 48 sub-grids per slide. The signal transduction proteins within the arrays have been printed in quadruplicate in 6 × 5 subarrays. Each feature on the array has a spot diameter of approximately 500 µm spaced at intervals of 300 µm. The sequence of the cloned ORFs and links to protein databases can be downloaded from the Sigma-Aldrich Web site (sigma-aldrich.com). A schematic and list of the Signal Transduction proteins are shown in Appendices A and B.

Each Signal Transduction array contains:

- 259 human signal transduction proteins
- 48 Cy3/Cy5-labeled BSA marker spots for array alignment
- 4 negative control spots consisting of the immobilization tag BCCP
- 4 negative control spots consisting of ß-galactosidase fused with the immobilization tag BCCP
- 4 anti-c-Myc positive control spots consisting of BCCP-c-Myc
- 4 anti-c-Myc positive control spots consisting of β -galactosidase fused with the immobilization tag BCCP-Myc
- Dilution series of 12 anti-c-Myc positive control spots consisting of β-galactosidase-BCCP-Myc
- Dilution series of 12 phosphotyrosine peptide control spots consisting of oriented peptides joined to the surface via a linker and consisting of the sequence biotin-Ahx-KVEKIGEGT[pY]GVVKK-CONH₂ in which the tyrosine residue is phosphorylated.
- Dilution series of 12 kinase substrate control spots consisting of oriented peptides joined to the surface via a linker and consisting of the sequence biotin-Ahx-KVEKIGEGTYGVVKK-CONH₂, which can act as a substrate for certain tyrosine kinases.
- Dilution series of negative control spots consisting of biotin-BSA
- 4 negative control spots printed with lysis buffer
- 4 negative control spots printed with spotting buffer

The proteins are arrayed onto a streptavidin-coated, low fluorescence glass slide ($25 \times 75.6 \times 1 \text{ mm}$) that is compatible with conventional microarray instrumentation. The upper side and orientation of the array is indicated by the label (Appendix A). The arrays are pre-washed and blocked with 2% BSA to reduce non-specific binding. If additional blocking is desired, see Assay Guidelines for recommendations.

BCR-peptide-Cy5

A peptide binding assay using a Cy5-labeled BCR peptide is supplied as a control assay to test the functionality of proteins on the Signal Transduction array. The sequence of the peptide is Cy5-C-Ahx-GSGSGKPF[pY]VNVEF-OH in which the motif KPF[pY]VNVEF corresponds to residues 174-182 of BCR_HUMAN, which binds specifically to the SH2 domain of GRB2_HUMAN (growth factor receptor-bound protein 2). Perform the peptide binding assay with the Functional Assay buffer provided with the kit. GRB2 is an important signaling molecule that interacts with certain tyrosine-phosphorylated proteins such as IRS1, SHC and LNK via its SH2 and SH3 domains. The assay demonstrates the utility of the Signal Transduction array to investigate peptide motif binding specificity in a parallel fashion.

Anti-c-Myc-Cy3

A Cy3-labeled anti-c-Myc monoclonal antibody is provided and serves as a positive control because the c-Myc tag is incorporated into all signal transduction proteins on the array. It is recommended to use the anti-c-Myc to probe each control or experimental array immediately after performing primary assays for protein function. This assay demonstrates that proteins are immobilized at each spot and can be used to quantify the amount of protein and for data normalization. Perform the anti-c-Myc binding assay with the Assay Buffer provided with the kit.

Control Assays

Protocol for Peptide Binding Assay

- a. Allow the Functional Assay Buffer to equilibrate to room temperature. Perform all steps at room temperature.
- b. Prior to performing the assay, add 150 mg of CHAPS and 150 μ l of 1 M DTT to 150 mL of the Functional Assay Buffer. Dissolve and mix thoroughly.
- c. Prepare the **Peptide Assay Probing Solution**: Dissolve the BCR-peptide-Cy5 in 25 μL of Functional Assay Buffer+CHAPS/DTT from step b and vortex thoroughly to completely dissolve. Centrifuge briefly to deposit the BCR-peptide solution in the bottom of the tube then pipette 22 μL of the solution into 5.5 mL of Functional Assay Buffer+CHAPS/DTT and mix thoroughly. This results in a 40 nM solution of BCR-peptide.
- d. Remove array from storage buffer and place in a clean Pap jar containing 25 mL of Functional Assay Buffer+CHAPS/DTT. Place the Pap jar on ice and shake gently (40–50 rpm) for 5 minutes.
- e. While the array is shaking, pipette 5 mL of the Peptide Assay Probing Solution from step c into one chamber of the quadriPERM culture dish.
- f. Remove array from the Functional Assay Buffer+CHAPS/DTT and drain the slide by blotting the long edge carefully onto lint-free tissue paper for 10 seconds.
- g. Dry the back of the slide on the lint-free tissue paper.
- h. Place the slide into the filled chamber of the quadriPERM culture dish so that it is horizontal with array side (label side) up. Ensure the slide does not rest on the plastic lugs at the numbered end of the chamber as this may lead to incomplete coverage of the slide. Add any additional slides to the chambers in the same manner and then replace the lid.
- i. Place the dish on a shaker at room temperature. Ensure the assay solution covers the entire array. Shake the dish gently (40–50 rpm) for 30 minutes at room temperature.
- j. After incubation, carefully remove each array from the incubation dish with a pair of forceps and place in a clean Pap jar containing 25 mL of Functional Assay Buffer+CHAPS/DTT. Cap the tube then **invert** several times. Place the tube on a shaker and shake gently (40–50 rpm) for 5 minutes to remove unbound probe. Pour off the Functional Assay Buffer+CHAPS/DTT.

- k. Perform two more 5 minute washes, **inverting** the container several times at each wash step.
- I. Pour off the final Functional Assay Buffer+CHAPS/DTT wash and add 25 mL of high purity water to wash away glycerol. Replace the lid on the container and **invert** several times before pouring off the water.
- m. Immediately transfer the arrays to a 50 mL disposable centrifuge tube positioning the slide with the label at the bottom of the tube using extreme care only to touch the slide label or edges to prevent damage to the array. Centrifuge the arrays at room temperature for 2 minutes at 240 \times g.
- n. Carefully remove the slides from the centrifuge tubes with a pair of dry, blunt-ended forceps, touching only the extreme end of the slide.
- o. Scan the slides from the non-labeled end using a microarray scanner or imager.

Protocol for the Cy3-anti-c-Myc Binding Assay

After performing the functional assay, use the anti-c-Myc-Cy3 to demonstrate the level of protein present in each signal transduction protein feature. Perform all steps at room temperature.

- a. Allow the Assay Buffer to equilibrate to room temperature. In order to perform the assay, it is necessary to make two buffers from the Assay Buffer.
- b. Prepare the **Anti-c-Myc Wash Buffer+DTT**: add 150 μ l of 1 M DTT to 150 mL of Assay Buffer immediately before use.
- c. Prepare the **Anti-c-Myc Probing Buffer**: add 200 mg of BSA to 10 mL of Anti-c-Myc Wash Buffer+DTT from step b.
- d. Dilute the anti-c-Myc-Cy3 conjugate1:1000 (5 µL plus 5 mL of Anti-c-Myc Probing Buffer).
- e. Place slides in a clean Pap jar with 25 mL Anti-c-Myc Wash Buffer+DTT and incubate with gentle shaking (40–50 rpm) for 5 minutes.
- f. Remove each array with a pair of blunt-ended forceps. Drain excess liquid from the slide surface by resting the long edge of the slide on lint-free tissue paper for 10 seconds.
- g. Dry the back of the slide on lint-free tissue paper.
- h. Place the slide into a chamber of a quadriPERM culture dish so it is horizontal with the array side (label side) facing up, then immediately pipette 2 mL of anti-c-Myc-Cy3 carefully onto the slide without introduction of bubbles. Add additional slides to the chambers in the same manner and then replace the lid. Ensure the slide does not rest on the plastic lugs at the numbered end of the chamber as this may lead to incomplete coverage of the slide. To protect the fluorophore, cover the quadriPERM vessel with foil.
- i. Incubate the quadriPERM vessel at room temperature and shake gently (40–50 rpm) for 6 hours. Most c-Myc positive proteins on the array can be visualized after a 6-hour incubation. To increase assay sensitivity, the incubation can be extended overnight up to 20 hours before processing. For longer incubations, place the quadriPERM dish in a sealed plastic container together with a wad of damp tissues to prevent drying out.
- j. After incubation, carefully remove each array from the incubation chamber with a pair of bluntended forceps and place in a clean Pap jar with 25 mL of Anti-c-Myc Wash Buffer+DTT (two arrays per tube). Cap the tube then **invert** several times. Shake the tube gently for 5 minutes to remove unbound antibody. Pour off the Anti-c-Myc Wash Buffer+DTT.
- k. Perform two more 5 minute washes, **inverting** the container several times at each wash step.
- I. Pour off the final Anti-c-Myc Wash Buffer+DTT and add 25 mL of high purity water to the Pap jar. Cap the tube and **invert** several times to remove glycerol from the slide.

- m. Using blunt-ended forceps, place each slide in a 50 mL disposable centrifuge tube with the label at the bottom of the tube. Be careful only to handle slides by the label or by the edges of the slide to avoid damaging the array. Centrifuge the arrays at room temperature for 2 min at $240 \times g$.
- n. Carefully remove the slides from the centrifuge tubes with a pair of blunt-ended forceps, touching only the extreme end of the slide.
- o. Scan the slides from the non-labeled end first, using a microarray scanner or imager.

Scanning

- a. Protein function arrays can be scanned using conventional microarray scanners and imagers to detect fluorescence.
- b. Scanning should be performed according to the manufacturer's recommended protocols. Care should be taken not to scratch the array surface during handling.
- c. Excitation and emission wavelengths for Cy5 are λ_{ex} 649 nm and λ_{em} 670 nm, respectively. Cy3 excitation and emission wavelengths are λ_{ex} 550 nm and λ_{em} 570 nm, respectively.
- d. It is advisable to perform a pre-scan to adjust the scanning parameters and obtain an optimal image. Final images should have the following properties: the most intense spots should not be saturated and background should be as low as possible. If the array image is faint, repeat the scanning with increased Laser Power (%) and or gain (PMT voltage) as necessary.

In the opposite case, repeat the scanning process at lower Laser Power (%) and lower PMT settings. Scanning should be repeated in order to obtain an optimal image, bearing in mind that "overexposure" can lead to photobleaching of fluorophores.

e. Images should be saved as TIFF files for future analysis.

Data Analysis

Analyze the images using a standard microarray analysis software package. After loading the TIFF file, analyze the array with an array-specific grid using the GAL file provided with the kit. The GAL file will also provide annotation for each spot on the array. Once the GAL file is loaded, adjust the grid so the marker spots are aligned in the top left corner of each sub-grid. This may be followed by auto-alignment. After auto-alignment, it may be necessary to manually edit individual subarrays to ensure optimal alignment. Follow the guidelines of the software manufacturer. For optimal results, use local background subtraction and measure net signal intensities using median pixel intensity values. Set the spot size to 400 µm.

When the grid alignment is complete, export the data in the order determined by the GAL file to the Excel spreadsheet provided with the kit. Cut and paste the column of data for each slide into the blue columns in the Cy3 or Cy5 "Input" sheets of the Panorama Signal Transduction Array Analysis Workbook. The Excel spreadsheet automatically sorts the data and determines the mean and standard deviation for the four replicates for each protein feature on the array. If required, sort the processed data manually according to the spot intensity and display the data graphically using standard Excel procedures.

Data Normalization

The amount of material for each protein on the array can vary depending on levels of expression. Take the variation of protein amount into consideration when analyzing data from microarray experiments. The Signal Transduction array includes biotin-BSA to detect any general non-specific binding. Other controls include proteins with and without the c-Myc epitope tag (β -galactosidase-BCCP-Myc, β galactosidase-BCCP, BCCP-Myc and BCCP), which will indicate any non-specific interactions related to the folding and detection tags. The controls measure any non-specific interactions and set a background level against which to determine significant interactions. Perform the anti-c-Myc-Cy3 assay on each slide after the primary assay to measure the amount of protein in every spot. The data obtained from the anti-c-Myc-Cy3 conjugate assay can be used to normalize the data from other assays performed on the array.

Standard Normalization

The signal from the primary assay is divided by the signal from the anti-c-Myc-Cy3 assay, thereby allowing normalization of the assay result to the amount of protein in each spot. After determining the mean and standard deviation for each of the four replicates for each protein, plot the data.

Note: If values for the anti-c-Myc-Cy3 assay are particularly low, do not use the values for normalization as this may lead to unreliable normalization of the primary assay data. As a guide, do not normalize values in the anti-c-Myc-Cy3 assay that are not significantly greater than the binding to control proteins using this method. Detection of individual proteins using the anti-c-Myc-Cy3 assay can be affected by the scanning parameters used, prior functional assays on the array, and occlusion of the c-Myc epitope.

As with any kind of normalization, consider whether normalization has introduced any misleading results. The following criteria should be used to corroborate positive results:

- Check magnitude of non-normalized data in both assays to ensure the normalized data is realistic.
- Ensure data for each of the four replicate spots display the same trend.
- Visually check positives on the original array images.

As with any array technology, validate any positive data spots by independent techniques such as immunoprecipitation assays, electrophoretic mobility shift or solution assays.

Guidelines for Different Assay Types

General Recommendations

Design buffers in accordance with known literature for the particular assay under investigation taking due consideration of the need for particular ions or cofactors. Where suitable, include 20% glycerol, 1 mM DTT, 0.1% Triton X-100 and at least 0.1% BSA to stabilize proteins on the array.

Signal Transduction Arrays have been blocked with 2% BSA; however, depending on the assay, it may be necessary to block further. To minimize non-specific binding, perform protein interaction and antibody binding assays in the presence of blocking materials such as 2% BSA or dried low-fat milk powder. Blocking with 5% milk powder is not recommended for work involving phosphorylation as it contains high concentrations of phosphoproteins that may increase background. If biotinylated probes are to be used, block the streptavidin surface with buffers incorporating 20 µM biotin. In such cases, it is advisable to probe in buffers containing 5% dried low fat milk powder.

When labeling proteins or peptides with fluorescent dyes, do not exceed a labeling ratio of 1–2 dye moieties per molecule to ensure that there is minimal interference with binding.

Label peptide and oligonucleotide probes during synthesis and purify them by HPLC.

Store labeled probes (e.g., DNA, peptides or proteins, including antibodies) in aliquots at –20°C. Do not freeze/thaw aliquots of probes more than once.

Where applicable, perform assays at 4 °C to maximize protein stability.

Phosphorylation on Arrays Using Exogenous Kinases

To determine which proteins are potential substrates for particular kinases, the proteins on Signal Transduction Array can be used as substrates for exogenous kinases.

Design buffers in accordance with known literature for the particular assay under investigation taking due consideration of the need for particular ions or cofactors. Where applicable, include 20% glycerol, 1 mM DTT, 0.1% Triton X-100 and at least 0.1% BSA in all buffers to stabilize proteins on the array.

Phosphorylation events can be detected successfully using labeled anti-phosphotyrosine and anti-phosphoserine or anti-phosphothreonine antibodies or by utilizing radiolabelled ATP.

Add exogenous kinases to the probing solutions at a concentration in the region of 10 nM. Perform phosphorylation reactions at 20–30 °C.

Assays Utilizing Radioactive ATP

Phosphorylation of proteins on these arrays can be detected using radiolabeled ATP. Ensure the final concentration of ATP exceeds 100 μ M and has a specific activity of >60 Ci/mmol [γ -³³P]-ATP.

Exogenous kinases can be added to the reaction at a concentration in the region of 10 nm.

To reduce the amount of radioactivity used, perform incubations in low volumes. Perform assays using 50 µL of probing solution under Hybri-slips supplied with this kit.

Exogenous kinases may auto-phosphorylate in the presence of ATP. It is important to ensure the kinase is thoroughly removed from the array before detection. To reduce non-specific binding of the exogenous kinase or radiolabeled probe to the array surface, wash the arrays once with water followed by two washes with 0.5% SDS in water, then wash the arrays twice in high purity water to remove the detergent before drying and detection. Perform each wash for 5 minutes with shaking at room temperature.

Phosphorylation can be detected using autoradiography or phosphorimaging.

DNA Binding Assays

It is recommended that oligonucleotides are 5'-labeled with fluorophores during synthesis (available from Sigma-Genosys). Both strands of double-stranded DNA probes can be labeled to maximize sensitivity.

When selecting probes, it is recommended to apply the same considerations as for any other DNA: protein study. Probes should be of the highest purity possible to generate unequivocal results. Oligos should not include repeat or lengthy sequences that may give rise to secondary structures.

Store aliquots of oligonucleotides at -20 °C. Do not freeze/thaw aliquots of probe more than once.

Antibody Binding Assays

Antibody labeling may be performed using mono-reactive Cy-dyes.

Desalt labeled probes to remove free dye before use.

Some dye labels lead to higher levels of non-specific binding than others. If high non-specific binding is observed, it may be necessary to evaluate other dyes.

When preparing labeled antibodies, prepare aliquots and store at -20 °C. Do not freeze/thaw aliquots of antibodies more than once.

Antibody binding can be detected by direct labeling of the antibody or by secondary detection using another antibody or probe. To simplify assay development, it is recommended to use direct detection where applicable.

Peptide Binding Assays

Peptide labeling may be performed using fluorescent compounds and this is best achieved during synthesis (available from Sigma-Genosys).

Peptides may be labeled at the N or C-terminus.

To circumvent steric hindrance, it is recommended that a spacer such as aminohexanoic acid is incorporated between the peptide and the labeling moiety.

Incorporation of a cysteine residue next to the spacer can act as a specific labeling moiety by use of maleimide reactive fluorophores provided no other cysteines are present in the sequence.

Peptides should be purified by HPLC to remove free dye and reaction contaminants after synthesis.

Some dye labels lead to higher levels of non-specific binding than others. If high non-specific binding is observed, it may be necessary to evaluate other dyes.

To assay highly basic peptides, it is recommended to pre-block the arrays with 0.01% poly-L-lysine (Catalog Number P8920) in Functional Assay Buffer for 5 minutes at room temperature.

When preparing peptides, it is recommended to aliquot and dry the peptides with a small amount of carrier protein (e.g., 5–20 µg BSA per tube) to reduce losses and to maximize long-term stability. Dry the peptides using centrifugal evaporation. Once dissolved in buffer, it is recommended to use peptide solutions immediately.

Protein:Protein Interactions

The optimal conditions for studying protein:protein interactions on the array will vary according to the protein being studied.

The optimal concentration of protein probe will depend on the affinity of interaction with arrayed proteins. Choose the probe concentration in accordance with the known literature or experience.

Protein-protein interactions can be detected by direct labeling or by indirect detection using labeled antibodies or probes. To simplify assay development, it is recommended to use direct detection where applicable.

Post-translational Modification

Protein function arrays can be used to determine whether the proteins on the array are potential substrates for specific enzymes such as kinases. These arrays can be used to determine the effect of post-translational modification in vitro on protein function.

The proteins on the array can be modified enzymatically on the array and detected using labeled antibodies specific for a particular modification.

Troubleshooting Guide

Signal is very low over the entire array

- Fluorescent labeling of the molecule used as probe may not have been efficient. Check the degree of labeling of the probe (1–2 molecules of dye per protein) and either repeat the labeling or use a higher amount of probe.
- Assay conditions used may be sub-optimal for any new interaction or reaction under study. Optimize the conditions as appropriate, including blocking conditions, assay buffer, assay incubation time and temperature.
- Check literature for specific conditions required for interaction of your probe with particular protein targets.

Signal for replicate spots is inconsistent

- When using cover slips, ensure that no air bubbles are trapped during assay.
- When assaying in larger volumes, ensure the arrays are completely covered with liquid and not allowed to dry out during assay.
- When using quadriPERM dishes, ensure the slide does not rest on the plastic lugs at the numbered end of the chamber.

Streaking is observed on the array after scanning

• This may occur when slides are dried by centrifugation and the array label is at the top. Always dry the slides with the label at the bottom of the tube.

Spots on the array appear scratched

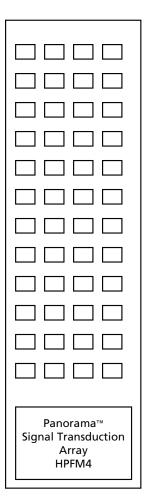
- If using cover slips, be careful not to drag the cover slip across the array surface when placing or removing.
- When using forceps, be certain to grasp the slide at either end and be certain not to touch the area where proteins are printed.

The background is speckled

- Use clean powder-free gloves when handling the arrays.
- Ensure assay containers are clean and free of fluorescent contaminants.
- Where applicable, ensure buffers are prepared freshly before use.
- Apply de-speckling algorithms present in most commercially available microarray analysis software packages.

Note: The speckling phenomenon does not materially affect the data generated.

The background signal is high over the entire surface


- Re-scan at lower laser power and PMT setting.
- Further blocking before and/or during the assay may be required to prevent non-specific interactions. Blocking is assay and sample dependant. Try using commonly used blocking agents (e.g., non-fat milk or increased concentrations of BSA.)
- When using a labeled antibody probe, the concentration of the probe must be optimized to minimize non-specific binding.

There are localized patches of high background on the slides

- Ensure arrays are completely covered with buffer during wash steps.
- Ensure arrays are not allowed to dry out during assay or processing.

Appendices

Appendix A: Protein Array Orientation

The Signal Transduction Array consists of forty-eight, 6×5 subgrids. Two Cy3/Cy5 biotin BSA marker spots are situated in the top left corner of the first and fourth sub-arrays of each row of subpanels. A dilution series of control proteins is situated in the top line of the second column of sub-arrays.

Appendix B: Panorama Signal Transduction Array Content

Symbol	Gene Name	Entrez Gene ID
ABI1	Abl interactor 1	10006
ACVR1	activin A receptor, type I	90
ADD1	adducin 1 (alpha)	118
ADRBK2	adrenergic, beta, receptor kinase 2	157
AKT1	v-akt murine thymoma viral oncogene homolog 1	207
AMD1	adenosylmethionine decarboxylase 1	262
ANXA1	annexin A1	301
APEX1	APEX nuclease (multifunctional DNA repair enzyme)	328

Symbol	Gene Name	Entrez Gene ID
ARAF1	v-raf murine sarcoma 3611 viral oncogene homolog 1	369
ARHA	ras homolog gene family, member A	387
ARRB1	arrestin, beta 1, transcript variant 1	408
ATF3	activating transcription factor 3	467
ATF4	activating transcription factor 4 (tax-responsive enhancer element B67)	468
BAD	BCL2-antagonist of cell death	572
BCL10	B cell lymphoma/leukemia 10	8915
BCL2A1	BCL2-related protein A1	597
BDNF	brain-derived neurotrophic factor, transcript variant 5	627
BIRC2	baculoviral IAP repeat-containing 2	329
BIRC3	baculoviral IAP repeat-containing protein 3	330
BIRC5	baculoviral IAP repeat-containing 5 (survivin)	332
BLK	B lymphoid tyrosine kinase	640
BMP7	bone morphogenetic protein 7 (osteogenic protein 1)	655
BMPR1A	bone morphogenetic protein receptor, type IA	657
BMX	BMX non-receptor tyrosine kinase	660
BRD8	bromodomain containing 8	10902
BTRC	beta-transducin repeat containing, transcript variant 1	8945
BUB1B	BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)	701
CA1	carbonic anhydrase I	759
CALM1	calmodulin 1 (phosphorylase kinase, delta)	801
CALM2	calmodulin 2 (phosphorylase kinase, delta)	805
CALM3	calmodulin 3 (phosphorylase kinase, delta)	808
CAMK2B	calcium/calmodulin-dependent protein kinase (CaM kinase) II beta	816
CAMK2G	calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma	818
CAMK4	calcium/calmodulin-dependent protein kinase IV	814
CAMKK2	calcium/calmodulin-dependent protein kinase kinase 2, beta	10645
CASP3	caspase 3, apoptosis-related cysteine protease	836
CASP9	caspase 9, apoptosis-related cysteine protease	842
CCNB1	cyclin B1	891
CCND1	cyclin D1 (PRAD1: parathyroid adenomatosis 1)	595
CCND2	cyclin D2	894
CCNH	cyclin H	902
CDC2	cell division cycle 2, G1 to S and G2 to M	983
CDC20	CDC20 cell division cycle 20 homolog (S. cerevisiae)	991
CDC25A	cell division cycle 25A	993
CDC25B	cell division cycle 25B	994

Symbol	Gene Name	Entrez Gene ID
CDC25C	cell division cycle 25C	995
CDC42	cell division cycle 42 (GTP binding protein, 25kDa)	998
CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	1026
CDKN2B	cyclin-dependent kinase inhibitor 2B	1030
CDKN2C	cyclin-dependent kinase inhibitor 2C	1031
CDKN2D	cyclin-dependent kinase inhibitor 2D	1032
CGEF2	cAMP-regulated guanine nucleotide exchange factor II	11069
CHN1	chimerin (chimaerin) 1	1123
CISH	cytokine inducible SH2-containing protein	1154
CNN1	calponin 1, basic, smooth muscle	1264
CREB1	cAMP responsive element binding protein 1	1385
CSEN	calsenilin, presenilin binding protein, EF hand transcription factor	30818
CSNK1D	casein kinase 1	1453
CSNK1G1	BC017236 , casein kinase 1	53944
CSNK1G2	casein kinase 1	1455
CSNK2A1	casein kinase 2, alpha 1 polypeptide	1457
CSNK2A2	casein kinase 2, alpha prime polypeptide	1459
CSTB	cystatin B (stefin B)	1476
CTNNB1	beta-catenin	1499
DDB1	damage-specific DNA binding protein 1	1642
DDIT3	DNA-damage-inducible	1649
DNAJB1	DnaJ (Hsp40) homolog, subfamily B	3337
DR1	down-regulator of transcription 1, TBP-binding (negative cofactor 2)	1810
DSCR1	Down syndrome critical region gene 1	1827
DUSP6	dual specificity phosphatase 6	1848
DVL2	dishevelled, dsh homolog 2 (Drosophila)	1856
EEF1A1	eukaryotic translation elongation factor 1 alpha 1	1915
EFS	embryonal Fyn-associated substrate	10278
EGR2	early growth response 2 (Krox-20 homolog, Drosophila)	1959
EIF4E	eukaryotic translation initiation factor 4E	1977
EIF4EBP1	eukaryotic translation initiation factor 4E binding protein 1	1978
ELK3	ELK3, ETS-domain protein (SRF accessory protein 2)	2004
EMS1	ems1 sequence (mammary tumor and squamous cell carcinoma-associated)	2017
ENO1	enolase 1	2023
ENO2	enolase 2	2026
EPS15	epidermal growth factor receptor substrate 15	2060
ERG	transcriptional regulator ERG	2078

Symbol	Gene Name	Entrez Gene ID
ESR2	estrogen receptor 2 (ER beta)	2100
ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2	2114
EXT1	exostoses (multiple) 1	2131
EXT2	exostoses (multiple) 2	2132
EZH2	enhancer of zeste homolog 2 (Drosophila)	2146
FADD	Fas (TNFRSF6)-associated via death domain	8772
FEN1	flap structure-specific endonuclease 1	2237
FES	feline sarcoma oncogene	2242
FGF1	fibroblast growth factor 1 (acidic)	2246
FGF13	fibroblast growth factor 13	2258
FOLH1	folate hydrolase (prostate-specific membrane antigen) 1	2346
FRK	fyn-related kinase	2444
FYN	FYN oncogene related to SRC, FGR, YES	2534
GADD45G	growth arrest and DNA-damage-inducible	10912
GATA3	GATA binding protein 3	2625
GCLC	glutamate-cysteine ligase, catalytic subunit	2729
GEM	GTP binding protein overexpressed in skeletal muscle	2669
GNA15	guanine nucleotide binding protein (G protein), alpha 15 (Gq class)	2769
GNAI2	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2	2771
GNAI3	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3	2773
GNA01	guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O	2775
GNAZ	guanine nucleotide binding protein (G protein), alpha z polypeptide	2781
GNB1	guanine nucleotide binding protein (G protein), beta polypeptide 1	2782
GNB3	guanine nucleotide binding protein (G protein), beta polypeptide 3	2784
GNG11	guanine nucleotide binding protein (G protein), gamma 11	2791
GNG2	guanine nucleotide binding protein (G protein), gamma 2	54331
GNG3	guanine nucleotide binding protein (G protein), gamma 3	2785
GNG4	guanine nucleotide binding protein (G protein), gamma 4	2786
GNGT1	guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 1	2792
GNGT2	guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 2	2793
GOLGA5	golgi autoantigen, golgin subfamily a,	9950
GPRK6	G protein-coupled receptor kinase 6	2870
GRB10	growth factor receptor-bound protein 10	2887
GRB2	growth factor receptor-bound protein 2	2885
GSK3B	glycogen synthase kinase 3 beta	2932
HBG1	hemoglobin, gamma A	3047

Symbol	Gene Name	Entrez Gene ID
HCLS1	hematopoietic cell-specific Lyn substrate 1	3059
HIF1A	hypoxia-inducible factor 1, alpha subunit	3091
HIF3A	hypoxia inducible factor 3, alpha subunit	64344
HIST1H4I	histone 1, H4i	8294
HK1	hexokinase 1	3098
HMGB2	high-mobility group box 2	3148
HPRT1	hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)	3251
HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene homolog	3265
HSPA1A	heat shock 70kDa protein 1A	3303
HSPCA	heat shock 90kDa protein 1, alpha	3320
HUS1	HUS1 checkpoint homolog	3364
ID1	inhibitor of DNA binding 1, dominant negative helix-loop-helix protein	3397
ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix protein	3398
IKBKB	inhibitor of kappa light polypeptide gene enhancer in B-cells	3551
IL18	interleukin 18	3606
ILK	integrin-linked kinase	3611
IMPDH1	IMP (inosine monophosphate) dehydrogenase 1	3614
INDO	indoleamine-pyrrole 2,3 dioxygenase	3620
INHBA	inhibin, beta A (activin A, activin AB alpha polypeptide)	3624
IRF5	interferon regulatory factor 5	3663
ISG20	interferon stimulated gene 20kDa	3669
JIK	STE20-like kinase	51347
KRAS2	v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog	3845
LCK	lymphocyte-specific protein tyrosine kinase	3932
LIMK2	LIM domain kinase 2	3985
MADH2	MAD, mothers against decapentaplegic homolog 2	4087
MADH4	MAD, mothers against decapentaplegic homolog 4	4089
MADH5	MAD, mothers against decapentaplegic homolog 5	4090
MADH9	MAD, mothers against decapentaplegic homolog 9	4093
MAP2K3	mitogen-activated protein kinase kinase 3	5606
MAP2K5	mitogen-activated protein kinase kinase 5	5607
MAP2K6	mitogen-activated protein kinase kinase 6	5608
MAP3K6	mitogen-activated protein kinase kinase kinase 6	9064
MAP3K7	mitogen-activated protein kinase kinase kinase 7	6885
MAPK1	mitogen-activated protein kinase 1	5594
MAPK11	mitogen-activated protein kinase 11	5600
MAPK13	mitogen-activated protein kinase 13	5603

Symbol	Gene Name	Entrez Gene ID
MAPK14	mitogen-activated protein kinase 14	1432
МАРК6	mitogen-activated protein kinase 6	5597
MAPK7	mitogen-activated protein kinase 7	5598
МАРК9	mitogen-activated protein kinase 9	5601
МАРКАРКЗ	mitogen-activated protein kinase-activated protein kinase 3	7867
MATK	megakaryocyte-associated tyrosine kinase	4145
MAX	MAX protein	4149
MCM5	MCM5 minichromosome maintenance deficient 5	4174
MEF2A	MADS box transcription enhancer factor 2, polypeptide A	4205
MEF2C	MADS box transcription enhancer factor 2, polypeptide C	4208
MIF	macrophage migration inhibitory factor	4282
MKNK1	MAP kinase-interacting serine/threonine kinase 1	8569
MMP2	matrix metalloproteinase 2	4313
MTCP1	mature T-cell proliferation 1	4515
MYBL2	v-myb myeloblastosis viral oncogene homolog (avian)-like 2	4605
MYD88	myeloid differentiation primary response gene (88)	4615
NCK1	NCK adaptor protein 1	4690
NCOA4	nuclear receptor coactivator 4	8031
NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor	4792
NR112	nuclear receptor subfamily 1, group I, member 2	8856
NR3C1	nuclear receptor subfamily 3, group C, member 1	2908
NR4A1	nuclear receptor subfamily 4, group A, member 1	3164
NR4A2	nuclear receptor subfamily 4, group A, member 2	4929
NUDT2	nudix (nucleoside diphosphate linked moiety X)-type motif 2	318
PAK4	p21(CDKN1A)-activated kinase 4	10298
PDE4A	phosphodiesterase 4A, cAMP-specific	5141
PDK1	pyruvate dehydrogenase kinase, isoenzyme 1	5163
PIK3R1	phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)	5295
PLD2	phospholipase D2	5338
PPARG	peroxisome proliferative activated receptor	5468
PPM1A	protein phosphatase 1A (formerly 2C), magnesium-dependent, alpha	5494
PPP2R2B	protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), beta	5521
PPP2R2C	protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), gamma	5522
PPP2R5A	protein phosphatase 2, regulatory subunit B (B56), alpha	5525
PPP2R5C	protein phosphatase 2, regulatory subunit B (B56), gamma	5527
PRDM4	PR domain containing 4	11108
PRKACB	protein kinase, cAMP-dependent, catalytic, beta	5567

Symbol	Gene Name	Entrez Gene ID
PRKAR1A	protein kinase, cAMP-dependent, regulatory, type I, alpha	5573
PRKCB1	protein kinase C, beta 1	5579
PRKCH	protein kinase C, eta	5583
PRKCI	protein kinase C, iota	5584
PRKCN	protein kinase C, nu	23683
PRKCZ	protein kinase C, zeta	5590
PRKD2	protein kinase D2	25865
PTK2	PTK2 protein tyrosine kinase 2	5747
PTPN1	protein tyrosine phosphatase, non-receptor type 1	5770
PTPN11	protein tyrosine phosphatase, non-receptor type 11	5781
РХК	PX domain containing serine/threonine kinase	54899
RAC1	ras-related C3 botulinum toxin substrate 1	5879
RAC2	ras-related C3 botulinum toxin substrate 2	5880
RAF1	v-raf-1 murine leukemia viral oncogene homolog 1	5894
RARA	retinoic acid receptor	5914
RET	ret proto-oncogene	5979
RHOH	ras homolog gene family, member H	399
RIPK2	receptor-interacting serine-threonine kinase 2	8767
RPS6KA1	ribosomal protein S6 kinase, 90kDa, polypeptide 1	6195
RPS6KA2	ribosomal protein S6 kinase, 90kDa, polypeptide 2	6196
RPS6KA5	ribosomal protein S6 kinase, 90kDa, polypeptide 5	9252
RRAS	related RAS viral (r-ras) oncogene homolog	6237
RRAS2	related RAS viral (r-ras) oncogene homolog 2	22800
SAV1	salvador homolog 1	60485
SGKL	serum/glucocorticoid regulated kinase-like	23678
SH2B	SH2-B homolog	25970
SLA	src-like-adaptor	6503
SNK	serum-inducible kinase	10769
SOCS2	suppressor of cytokine signaling 2	8835
SOCS4	suppressor of cytokine signaling 4	9306
SOCS5	suppressor of cytokine signaling 5	9655
SPARC	secreted protein, acidic, cysteine-rich (osteonectin)	6678
SRC	v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)	6714
STAM	signal transducing adaptor molecule (SH3 domain and ITAM motif) 1	8027
STAT1	signal transducer and activator of transcription 1, 91kDa	6772
STAT3	signal transducer and activator of transcription 3	6774
STAT4	signal transducer and activator of transcription 4	6775

Symbol	Gene Name	Entrez Gene ID
STAT5A	signal transducer and activator of transcription 5A	6776
STK17B	serine/threonine kinase 17b (apoptosis-inducing)	9262
STK22C	serine/threonine kinase 22C (spermiogenesis associated)	81629
STK24	serine/threonine kinase 24	8428
STK25	serine/threonine kinase 25	10494
STK3	serine/threonine kinase 3	6788
STK38	serine/threonine kinase 38	11329
STK38L	serine/threonine kinase 38 like	23012
STK6	serine/threonine kinase 6	6790
STMN1	stathmin 1/oncoprotein 18	3925
SYK	spleen tyrosine kinase	6850
TBK1	TANK-binding kinase 1	29110
TBL1X	transducin (beta)-like 1X-linked	6907
TEK	TEK tyrosine kinase, endothelial	7010
TFG	TRK-fused gene	10342
TLK1	tousled-like kinase 1	9874
TNFRSF6	tumor necrosis factor receptor superfamily	355
TOLLIP	toll interacting protein	54472
TRAF2	TNF receptor-associated factor 2	7186
TRAF4	TNF receptor-associated factor 4	9618
TRAF5	TNF receptor-associated factor 5	7188
TRAF6	TNF receptor-associated factor 6	7189
TRAP100	thyroid hormone receptor-associated protein	9862
TRAP25	TRAP/Mediator complex component	90390
TTRAP	TRAF and TNF receptor associated protein	51567
VAV1	vav 1 oncogene	7409
VDRIP	vitamin D receptor interacting protein	29079
VEGFB	vascular endothelial growth factor B	7423
ZAK	sterile alpha motif and leucine zipper containing kinase AZK	51776
ZAP70	zeta-chain (TCR) associated protein kinase	7535

Control and Marker Proteins

Protein Content Code	Symbol	Identify	Gene ID
Marker		Cy3/Cy5 labeled biotin-BSA marker proteins	
Control 1		β-gal-BCCP-Myc	
Control 2		BCCP-Myc	
Control 3		β-gal-BCCP	
Control 4		ВССР	
Controls 5–12		Insect Lysis Buffer	

Dilution Series

Features BCCP1 to BCCP6 represent a two-fold dilution series of BCCP-Myc starting from the standard lysate concentration used for all other recombinant proteins.

Features BSA1 to BSA 6 represent a two-fold dilution series of biotin-BSA starting at a spotting concentration of 25 ng/µL.

Biotin BSA Standard	Spotting Concentration
BSA1	25 ng/μL
BSA2	12.5 ng/μL
BSA3	6.25 ng/μL
BSA4	3.125 ng/μL
BSA5	1.56 ng/μL
BSA6	0.78 ng/µL

Features NP1 to NP6 represent a two-fold dilution series of a non-phosphorylated peptide (biotin-Ahx-KVEKIGEGTYGVVKK-CONH₂) which acts as a substrate for certain kinases such as FES kinase.

Non-phosphorylated Peptide Standard	Spotting Concentration
NP1	156 pg/μL
NP2	78 pg/μL
NP3	39 pg/μL
NP4	19.5 pg/μL
NP5	9.8 pg/μL
NP6	4.9 pg/μL

Phosphorylated Peptide Standard	Spotting Concentration
PP1	156 pg/μL
PP2	78 pg/μL
РРЗ	39 pg/μL
PP4	19.5 pg/μL
PP5	9.8 pg/μL
PP6	4.9 pg/μL

Features PP1 to PP6 represent a two-fold dilution series of a phosphorylated peptide (biotin-Ahx-KVEKIGEGTY*GVVKK-CONH₂) that is recognized by anti-phosphotyrosine antibodies.

References

- 1. Gene Ontology: tool for the unification of biology (2000), *Nature Genetics*, **25**, 25-29, The Gene Ontology Consortium.
- 2. Functional protein microarrays for parallel characterisation of p53 mutants (2004) *Proteomics*, **4**, 1950-1958, Boutell JM, Hart DJ, Godber BLJG, Kozlowski RZ and Blackburn JM.
- 3. Strategies for immobilisation of biomolecules in a microarray (2004), *Combinatorial Chemistry & High Throughput Screening*, **7**, 213-221, Yeo DSY, Panicker RC, Tan L-P and Yea SQ.
- 4. Enzymatic activity on a chip: The critical role of protein orientation (2005) *Proteomics*, **5**, 416-419, Cha TW, Guo A and Zhu X-Y.
- 5. Development of Protein Microarrays for Drug Discovery (2004) Koopmann JO, McAndrew MB and Blackburn JM in Protein Microarrays; Mark Schena (Ed), pp 401-420.
- 6. Reversible, site specific immobilization of polyarginine-tagged fusion proteins on mica surfaces. (1997) *FEBS Letters* **414**, 233-238, Nock S., Spudich, J. A., Wagner, P.

Relevant Patents

- 1. WO 01/57198. Methods Of Generating Protein Expression Arrays And The Use Thereof In Rapid Screening.
- 2. WO 02/27327. Rapid Profiling Of The Interactions Between A Chemical Entity And Proteins In A Given Proteome.
- 3. WO 03/048768. Protein Arrays For Allelic Variants And Uses Thereof.
- 4. WO 03/064656. Protein Tag Comprising A Biotinylation Domain And Method For Increasing Solubility And Determining Folding State.

Notes

Norld Headquarters	Order/Customer Service (800) 325-3010 • Fax (800) 325-5052
8050 Spruce St., St. Louis, MO 63103 314) 771-5765	Technical Service (800) 325-5832 • sigma-aldrich.com/techservice
sigma-aldrich.com	Development/Bulk Manufacturing Inquiries SAFC ⁻ (800) 244-1173

///Fluka

The SIGMA-ALDRICH Group

SIGMA 🕘 ALDRICH

©2006 Sigma-Aldrich Co. All rights reserved. SIGMA, *, SAFC, SAFC^{*}, SIGMA-ALDRICH, *, ISOTEC, ALDRICH, *, FLUKA, *, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology LP. Riedel-de Haën[®]: trademark under license from Riedel-de Haën GmbH. Sigma products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

SUPELCO[®]

ISOTEC"

SAFC

CyDye is a trademark of Amersham Pharmacia Biotech, UK Ltd.

quadriPERM is a registered trademark of Heraeus Instrument GmbH.

HybriSlip is a trademark of Heraeus Instruments, GmbH.

This product is sold under an exclusive worldwide license and joint collaborative agreement between Sigma-Aldrich Corp. and Procognia Limited.

Accelerating Customers' Success through Leadership in Life Science, High Technology and Service

> 00828-502907 0506