# Sigma-Aldrich.

**Technical Bulletin** 

# Creatine Assay Kit

#### Catalogue number MAK494

# **Product Description**

Creatine is present in vertebrates and helps to supply energy to muscle. In humans and animals, approximately half of creatine originates from food (mainly from fresh meat). Creatine supplementation has been investigated as a possible therapeutic approach for the treatment of muscular, neuromuscular, neurological, and neurodegenerative diseases.

Simple, direct, and automation-ready procedures for measuring creatine are popular in research and drug discovery. The Creatine Assay Kit is based on enzymatic reactions leading to the formation of a pink colored product. The absorbance at 570 nm or fluorescence intensity at  $\lambda_{\text{Ex}}$  =530 nm/ $\lambda_{\text{Em}}$  =590 nm is directly proportional to the creatine concentration in the sample.

The linear detection range of the kit is 4 to 1000  $\mu$ M for the colorimetric assay and 0.5 to 50  $\mu$ M for the fluorometric assay. The kit is suitable for creatine concentration determination in biological samples such as serum, plasma, urine, and saliva.

#### Components

The kit is sufficient for 100 colorimetric or fluorometric assays in 96-well plates.

| • | Assay Buffer<br>Catalogue Number MAK494A              | 20 mL  |
|---|-------------------------------------------------------|--------|
| • | Enzyme A<br>Catalogue Number MAK494B                  | 120 µL |
| • | Enzyme B<br>Catalogue Number MAK494C                  | 220 µL |
| • | Dye Reagent<br>Catalogue Number MAK494D               | 220 µL |
| • | Standard (20 mM creatine)<br>Catalogue Number MAK494E | 400 μL |

# Equipment Required but Not Provided

- Pipetting devices and accessories (for example, multichannel pipettor)
- Multiwell plate reader
- Clear flat-bottom 96-well plates for colorimetric assay or black flat-bottom 96-well plates for fluorometric assay. Cell culture or tissue culture treated plates are not recommended.
- 1.5 mL microcentrifuge tubes
- Dounce tissue grinder set (Catalogue Number D9063 or equivalent)

#### Precautions and Disclaimer

For Research Use Only. Not for use in diagnostic procedures. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

# Storage/Stability

1

The kit is shipped on wet ice. Store components at -20  $^{\circ}$ C.

#### **Preparation Instructions**

Briefly centrifuge small vials prior to opening. Equilibrate all components to room temperature prior to use.



#### Procedure

All Samples and Standards should be run in duplicate.

#### Sample Preparation

**Note:** SH-group containing reagents (for example: mercaptoethanol, DTT, and EDTA) may interfere with this assay and should be avoided in Sample preparation

- Solid Samples can be extracted by homogenization in purified water and filtered or centrifuged.
- 2. Liquid Samples (for example: serum, plasma, and urine) can be assayed directly.
- 3. Transfer 10  $\mu$ L of each Sample into two separate wells, one serving as a Sample Blank well (R<sub>BLANK</sub>) and one as a Sample well (R<sub>SAMPLE</sub>).

#### Colorimetric Standard Curve Preparation:

- 1. Prepare a 1000  $\mu M$  Standard by mixing 15  $\mu L$  of the 20 mM Standard with 285  $\mu L$  of purified water.
- 2. Prepare Standards in 1.5 mL microcentrifuge tubes according to Table 1.

**Table 1.**Preparation of Creatine Colorimetric Standards

| Well | 1000 µM<br>Standard | Purified<br>Water | Creatine<br>(µM) |
|------|---------------------|-------------------|------------------|
| 1    | 100 μL              | 0 μL              | 1000             |
| 2    | 60 µL               | 40 µL             | 600              |
| 3    | 30 µL               | 70 μL             | 300              |
| 4    | 0 μL                | 100 µL            | 0                |

3. Mix well and transfer 10  $\mu$ L of each Standard into separate wells of a clear 96-well plate.

#### Fluorometric Standard Curve Preparation

- 1. Prepare a 500  $\mu$ M Standard by mixing 10  $\mu$ L of the 20 mM Standard with 390  $\mu$ L of purified water.
- 2. Prepare Standards in 1.5 mL microcentrifuge tubes according to Table 2.

**Table 2.**Preparation of Creatine Fluorometric Standards

| Well | 500 µM<br>Standard | Purified<br>Water | Creatine<br>(µM) |
|------|--------------------|-------------------|------------------|
| 1    | 10 μL              | 90 μL             | 50               |
| 2    | 6 µL               | 94 µL             | 30               |
| 3    | 3 µL               | 97 μL             | 15               |
| 4    | 0 μL               | 100 μL            | 0                |

3. Mix well and transfer 10  $\mu$ L of each Standard into separate wells of a black 96-well plate.

#### Working Reagent Preparation

Mix enough reagent for the number of assays to be performed. For each Sample and Standard well, prepare 93  $\mu$ L of Working Reagent according to Table 3. For each Sample Blank well, prepare 92  $\mu$ L of Blank Control Reagent according to Table 3.

**Table 3.** Preparation of Working Reagents

| Reagent      | Working<br>Reagent | Blank<br>Control<br>Reagent |
|--------------|--------------------|-----------------------------|
| Assay Buffer | 90 µL              | 90 µL                       |
| Enzyme A     | 1 μL               | -                           |
| Enzyme B     | 1 μL               | 1 μL                        |
| Dye reagent  | 1 µL               | 1 μL                        |

Transfer 90  $\mu$ L of Working Reagent into each Standard and Sample well. Transfer 90  $\mu$ L of Blank Control Reagent each Sample Blank well. Tap plate to mix.

#### Measurement

- 1. Incubate the plate for 30 minutes at room temperature.
- 2. Measure the optical density at 570 nm or fluorescence intensity at  $\lambda_{Ex}$  = 530 nm/  $\lambda_{Em}$  = 590 nm.

# Results

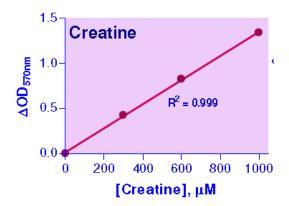
- 1. Calculate  $\Delta$ OD or  $\Delta$ F by subtracting the blank reading (OD or fluorescence intensity F) of Standard #4 (Blank) from the remaining Standard reading values
- 2. Plot the  $\Delta F$  or  $\Delta OD$  against the standard concentrations.
- 3. Determine the slope and calculate the creatine concentration of samples using the below equation:

Creatine (µM)=

$$\frac{R_{Sample} - R_{Blank}}{Slope \left(\mu M^{-1}\right)} \times DF$$

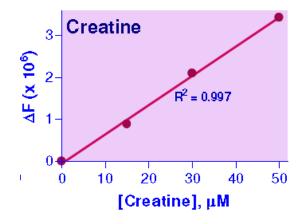
Where:

 $R_{Sample} = OD$  or fluorescence intensity (F) reading of Sample


 $R_{Blank}$  = OD or fluorescence intensity (F) reading of Sample Blank

DF = Sample dilution factor (DF = 1 for undiluted Samples)

**Note:** If the calculated creatine concentration is higher than 1000  $\mu$ M for the colorimetric assay or 50  $\mu$ M for the fluorometric assay, dilute the sample in purified water and repeat assay. Multiply result by the dilution factor (DF).


Conversions: 1000  $\mu M$  creatine equals 13.1 mg/dL or 131 ppm.

**Figure 1.**Typical Colorimetric Creatine Standard Curve



3

**Figure 2.**Typical Fluorometric Creatine Standard Curve



#### **Notice**

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

#### **Technical Assistance**

Visit the tech service page at <a>SiamaAldrich.com/techservice</a>.

#### Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

#### **Contact Information**

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

