

SIGMA QUALITY CONTROL TEST PROCEDURE

Product Information

**Enzymatic Assay of NADase
(EC 3.2.2.5)****PRINCIPLE:**

Abbreviations used:

β -NAD = β -Nicotinamide Adenine Dinucleotide, Oxidized Form

ADP-ribose = Adenosine 5'-Diphosphate-Ribose

ADH = Alcohol Dehydrogenase

β -NADH = β -Nicotinamide Adenine Dinucleotide, Reduced Form

CONDITIONS: T = 37°C, pH = 7.3, A_{340nm}, Light path = 1 cm

METHOD: Spectrophotometric Determination

REAGENTS:

- A. 100 mM Potassium Phosphate Buffer, pH 7.3 at 37°C
(Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 7.3 at 37°C with 1 M NaOH.)
- B. 7.5 mM β -Nicotinamide Adenine Dinucleotide, Oxidized Form Solution (β -NAD)
(Prepare 5 ml in deionized water using β -Nicotinamide Adenine Dinucleotide, Sigma Prod. No. N-7004.)
- C. 3 M Trichloroacetic Acid Solution (TCA)
(Prepare 10 ml in deionized water using Trichloroacetic Acid, 6.1 N Solution, approximately 100% (w/v), Sigma Stock No. 490-10.)
- D. 453 mM Glycine Buffer, pH 9.8 at 25°C
(Prepare 100 ml in deionized water using Glycine, Free Base, Sigma Prod. No. G-7126. Adjust to pH 9.8 at 25°C with 1 M NaOH.)

Enzymatic Assay of NADase (EC 3.2.2.5)

REAGENTS: (continued)

- E. 74 mM Pyrophosphate, 75 mM Semicarbazide and 1% (v/v) Ethanol (ADH React. Cocktail)
(Prepare 100 ml in Reagent D using Pyrophosphate, Tetrasodium, Decahydrate, Sigma Prod. No. P-9146, Semicarbazide Hydrochloride, Sigma Prod. No. S-4125, and 200 Proof USP Ethyl Alcohol, available from Quantum Chemical Company.)
- F. Alcohol Dehydrogenase Enzyme Solution (ADH)
(Immediately before use, prepare a solution containing approximately 5000 units/ml of Alcohol Dehydrogenase, Sigma Prod. Nos. A-7011 or A-3263 in cold Reagent A.)
- G. NADase Enzyme Solution (NADase)
(Immediately before use, prepare a solution containing 0.1 - 0.2 unit/ml of NADase in cold Reagent A.)

PROCEDURE:

Step 1

Pipette (in milliliters) the following reagents into suitable centrifuge tubes:

	<u>Test</u>	<u>Blank</u>
Reagent A (Buffer)	0.80	0.80
Reagent B (β -NAD)	0.20	0.20
Reagent C (TCA)	-----	0.30

Mix by inversion and equilibrate to 37°C. Then add:

Reagent G (NADase) 0.20 0.20

mix by inversion and incubate for exactly 20 minutes at 37°C. Then add:

Reagent C (TCA)

**Enzymatic Assay of NADase
(EC 3.2.2.5)**

PROCEDURE: (continued)

Step 2

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test</u>	<u>Blank</u>
Test Supernatant	0.40	-----
Blank Supernatant	-----	0.40
Reagent E (ADH React. Cocktail)	2.60	2.60

Mix by inversion and equilibrate to 25°C using a suitably thermostatted spectrophotometer. Record the initial $A_{340\text{nm}}$ for both the Test and Blank. Then add:

	<u>Test</u>	<u>Blank</u>
Reagent F (ADH)	0.01	0.01

Immediately mix by inversion and monitor the increase in $A_{340\text{nm}}$ until constant. The maximum increase in $A_{340\text{nm}}$ should be obtained after 5 - 10 minutes at 25°C. Record the final $A_{340\text{nm}}$ for both the Test and Blank.

CALCULATIONS:

$$\Delta A_{340\text{nm}} = \text{Final } A_{340\text{nm}} - \text{Initial } A_{340\text{nm}}$$

$$\text{Units/ml enzyme} = \frac{(\Delta A_{340\text{nm}} \text{ Blank} - \Delta A_{340\text{nm}} \text{ Test})(1.5)(3.01)(df)}{(20)(6.22)(0.2)(0.4)}$$

1.5 = Total volume (in milliliters) of Step 1

3.01 = Total volume (in milliliters) of Step 2

df = Dilution factor

20 = Time (in minutes) of Step 1 assay as per the Unit Definition

6.22 = Millimolar extinction coefficient of β-NADH at 340nm

0.2 = Volume (in milliliter) of enzyme used

0.4 = Volume (in milliliter) of Step 1 used in Step 2

$$\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

**Enzymatic Assay of NADase
(EC 3.2.2.5)**

CALCULATIONS: (continued)

$$\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}$$

UNIT DEFINITION:

One unit will hydrolyze 1.0 μ mole of β -NAD to nicotinamide and ADP-ribose per minute at pH 7.3 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 1.20 ml reaction mix, the final concentrations are 83 mM potassium phosphate, 1.3 mM β -nicotinamide adenine dinucleotide and 0.02 - 0.04 unit NADase.

REFERENCE:

Kaplan, N. O. (1955) *Methods in Enzymology*, Vol II, 660-663

NOTES:

1. The amount of β -NAD consumed in the first reaction catalyzed by NADase is determined by measuring the residual β -NAD using this reaction.
2. This assay is based on the cited reference.
3. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information and product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packaging slip.