

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Phospholipase A₂ from honey bee venom (*Apis mellifera*)

Catalog Number **P9279** Storage Temperature –20 °C

CAS RN 9001-84-7

EC 3.1.1.4

Synonyms: Phosphatidylcholine 2-acylhydrolase,

Lecithinase A, PLA2

Product Description

Molecular mass: 1 14.5 kDa (amino acid sequence) pl: 2 10.5 \pm 1.0

Phospholipase A_2 reacts stereospecifically with most sn-3-phosphoglycerides. The fatty acid ester bonds are hydrolyzed at the C-2 position. This reaction requires calcium for catalysis. The general reaction catalyzed is:

phosphatidylcholine + H₂O → 1-acylglycerophosphocholine + fatty acid

Phospholipase A_2 is inhibited *in vitro* by both calpactin I and calpactin II. The calpactins sequester the phospholipid substrate. There is no direct interaction between the calpactins and phospholipase A_2 .³

Quinacrine has also been described as an inhibitor of phospholipase A_2 (IC₅₀ = 17 μ M).⁴

Phospholipase A_2 is a single polypeptide chain of \sim 123 amino acids containing seven disulfide bridges. The crystal structure of phospholipase A_2 from bee venom, complexed with a phosphonate transition-state analogue compound, has been reported.⁵

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Sigma-Aldrich tests the solubility of this product at 1.0 mg/mL in water. One publication reports the preparation of stock solutions of this product at the equivalent of 17.5 mg/mL in an aqueous buffer that contains 10 mM MOPS, pH 7.2, 0.5 mM EGTA, 100 mM HCI, and 4 mM CaCl₂.⁶

References

- De Haas, G.H. et al., Studies on phospholipase A and its zymogen from porcine pancreas. II. The assignment of the position of the six disulfide bridges. Biochim. Biophys. Acta, 221(1), 54-61 (1970).
- 2. De Haas, G.H. *et al.*, Purification and properties of phospholipase A from porcine pancreas. *Biochim. Biophys. Acta*, **159(1)**, 103-117 (1968).
- Davidson, F.F. et al., Inhibition of phospholipase A2 by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J. Biol. Chem., 262(4), 1698-1705 (1987).
- Magolda, R.L. et al., "Novel Synthesis of Potent Site-Specific Phospholipase A2 Inhibitors", from Prostaglandins, Leukotrienes and Lipoxins (J.M. Bailey, ed). Plenum Press (New York, NY), pp. 669-672 (1985).
- Scott, D.L. et al., Crystal structure of bee-venom phospholipase A2 in a complex with a transitionstate analogue. Science, 250(4987), 1563-1566 (1990).
- Bollinger, J.G. et al., Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry. J. Lipid Res., 51(2), 440-447 (2010).

MWM, NSB, FEB, GCY, MAM 07/18-1