

User Protocol TB401 Rev. B 0211JN

Page 1 of 10

pRSF and pCDF Vectors

Table of Contents

About the Kits	2
Description	2
Components	2 2
Storage	2
pRSF-1b and pCDF-1b	3
Vector and Host Strain Compatibility	3
Vector compatibility	3
Host strain compatibility	4
Procedures	5
Cloning	5 5
Analysis of recombinants	5
Primers	6
Transformation into expression host strains	6
Induction	6
Induction analysis, protein detection, purification, and quantification	6
References	9
Bacterial Strain Non-distribution Agreement	10

© 2011 EMD Chemicals, Inc., an affiliate of Merck KGaA, Darmstadt, Germany. All rights reserved. FRETworksTM, His•MagTM, His•TagTM, LumiBlotTM, LysonaseTM, Overnight ExpressTM, pACYCDuetTM, pCDFDuetTM, Perfect ProteinTM, pETCocoTM, pETDuetTM, pRSFDuetTM, rLysozymeTM, RoboPopTM, RosettaBlueTM, Rosetta-gamiTM, SpinPrepTM, S•TagTM, Trail MixTM, and TunerTM are trademarks of Merck KGaA, Darmstadt, Germany. Benzonase[®], BugBuster[®], His•Bind[®], PopCulture[®], and Novagen[®] are registered trademarks of Merck KGaA, Darmstadt, Germany. SuperflowTM is a trademark of Sterogene Bioseparations Inc.

The T7 expression system is covered by US Patent 5,643,489. A non-distribution agreement is included in this document. Commercial customers must obtain a license agreement from Brookhaven Science Associates before purchase. KOD DNA Polymerases are manufactured by TOYOBO and distributed by EMD Chemicals Inc. KOD XL DNA Polymerase is licensed under US Patent 5,436,149 owned by Takara Shuzo, Co., Ltd. Purchase of KOD DNA Polymerases includes an immunity from suit under patents specified in the product inserts to use only the amount purchased for the purchaser's own internal research. No other patents rights are conveyed expressly, by implication, or by estoppel. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California, 94404, USA.

USA and Canada
Tel (800) 628-8470
bioscienceshelp@
emdchemicals.com

France Freephone 0800 126 461

Germany Freecall 0800 100 3496 Europe Ireland Toll Free 1800 409 445

United Kingdom Freephone 0800 622 935 All other European Countries +44 115 943 0840

All Other Countries

Contact Your Local Distributor
www.merck4biosciences.com
bioscienceshelp@
emdchemicals.com

techservice@merckbio.eu

About the Kits

pRSF Expression System 1b	1 kit	71375-3
pRSF Expression System 1b plus Competent Cells	1 kit	71376-3
pCDF Expression System 1b	1 kit	71331-3
pCDF Expression System 1b plus Competent Cells	1 kit	71332-3
pRSF-1b DNA	10 µg	71363-3
pCDF-1b DNA	10 µg	71330-3

Description

Coexpression of multiple target genes in *E. coli* is advantageous for studying protein complexes. Coexpression often achieves optimal yield, solubility, and activity and may protect individual subunits form degradation (1–7). The pCDF-1b and pRSF-1b T7 promoter-based expression plasmids feature capabilities to coexpress and express fusion proteins with an N-terminal His•Tag® sequence can be removed after purification by cleavage with the appropriate protease. Each vector contains a T7lac promoter for high-level protein expression, followed by an optimal ribosome binding site, multiple cloning site (MCS) region, and T7 terminator. The MCS regions have restriction sites that facilitate the transfer of inserts from existing pET vector constructs. pRSF-1b carries a replicon derived from RSF1030 (8, 9) and a marker for kanamycin resistance and pCDF-1b carries a replicon derived from CloDF13 (10) and a marker for streptomycin/spectinomycin resistance. These vectors can be used together or with existing pET and Duet vector recombinants with compatible replicons and antibiotic resistance markers.

Components

Expression Systems

■ 10 µg	pRSF-1b <u>or</u> pCDF-1b DNA		
■ 0.2 ml	BL21 Glycerol Stock		
■ 0.2 ml	BL21(DE3) Glycerol Stock		
■ 0.2 ml	BL21(DE3)pLysS Glycerol Stock		
Expression Systems plus Competent Cells			

All the components in the Expression Systems plus:

■ 0.2 ml	NovaBlue Competent Cells
■ 0.2 ml	BL21(DE3) Competent Cells
■ 0.2 ml	BL21(DE3)pLysS Competent Cells
■ 2 ng	Test Plasmid (ampicillin resistant)
■ 2 × 2 ml	SOC Medium

Storage

Store Competent Cells and Glycerol Stocks at -70°C. Store all other components at -20°C.

pRSF-1b and pCDF-1b

Each plasmid carries a T7*lac* promoter, ribosome binding site, multiple cloning site (MCS) and T7 terminator. The plasmids also have the *lacI* gene to ensure the expression of sufficient *lac* repressor to control basal expression. In each of these two vectors, the MCS has an *Nco* I restriction site at the ATG (Met) translation initiation site that can be used to produce unfused protein and several restriction sites common to most pET vectors (*BamH I, EcoR I, Sac I, Sal I, Hind III,* and *Not I*) for easy transfer of inserts. The MCS also encodes a six amino acid (aa) amino-terminal His•Tag® sequence for detection and purification and an optional 15 aa carboxy terminal S•TagTM sequence for detection, purification and quantification. (See Technical Bulletins 392 and 393 for detailed maps of pCDF-1b and pRSF-1b, respectively). Ek/LIC cloning versions of the pCDF and pRSF vectors are also available (pCDF-2 Ek/LIC and pRSF-2 Ek/LIC, see Technical Bulletin 163).

The plasmids differ in antibiotic resistance markers, replicons, and copy numbers. The CloDF13 replicon was combined with aadA gene encoding streptomycin and spectinomycin resistance to create pCDF1-b and confers resistance a final concentration of 50 μ g/ml of one or 50 μ g/ml of each antibiotic (Cat. Nos. 5711 and 567570, respectively). A slightly modified version of the RSF1030 replicon was combined with a kanamycin resistance marker to create pRSF-1b and confers resistance to a final concentration of 30 μ g/ml of kanamycin (Cat. No. 420311). Both replicons are compatible with each other and with the ColE1 replicon (pET) and P15A replicon (pACYC) (11).

Vector and Host Strain Compatibility

Vector compatibility

Table 1 summarizes the replicons and compatible replicons used in Novagen *E. coli* expression vectors and strains. Note that the vectors must also have different antibiotic resistance markers for compatibility. The difference in target gene dosage attributed to plasmid copy number between any of the plasmids could be used to influence relative target protein expression levels according to the relative plasmid copy number.

Note:The combination of a "plain" T7 promoter pET plasmid [i.e., pET-3a-d, pET-20b(+), etc.] with a T7\text{\text{lac} promoter plasmid is not recommended.}

Table 1 Plasmid replicons and compatibility				
Plasmid(s)	Replicon (source)	Copy Number*	Compatible replicons	
pET (all), pETDuet TM -1	ColE1 (pBR322)	~40	P15A, Mini-F/RK2, CloDF13, RSF1030	
pACYCDuet TM -1, pLysS, pLysE, pLacI, pRARE	P15A (pACYC184)	10–12	ColE 1, Mini-F/RK2, CloDF13, RSF1030	
pCDF-1b, pCDFDuetTM-1	CloDF13	~20–40	ColE 1, P15A, RSF1030	
pRSF-1b, pRSFDuetTM-1	RSF1030	> 100	ColE 1, P15A, CloDF13	
pETcoco TM (all)	Mini-F/RK2 (pBeloBAC11, RK2)	1 amplifiable to ~40	ColE 1, P15A	

^{*} Copy number was estimated based on gel analysis (12, 13).

Host strain compatibility

For protein production, the pRSF and pCDF recombinants are transferred to an *E. coli* expression host (DE3) containing a chromosomal copy of the gene for T7 RNA polymerase. The choice of an expression host strain is based on strain characteristics and expression vector compatibility. Review the Competent Cells Technical Bulletin (TB009) for complete descriptions of the host strain characteristics. Use the following tables to determine compatibility.

Note: pRSF and pCDF plasmids are not compatible with pETcoco™ vectors.

Table 2 Vector and host strain compatibility						
Compatible Vector Combinations				Number of	Compatible	
Vector 1	Vector 2			coexpressed target proteins	expression host strains	
pRSF-1b (Kn ^R)	pCDF-1b or pCDFDuet TM -1 (Sm ^R Sp ^R)	pACYCDuet TM -1 (Cm ^R)	pET or pETDuet™-1 (Ap ^R)	5–7	Group A	
pCDF-1b (Sm ^R Sp ^R)	pRSF-1b or pRSFDuet TM -1 (Kn ^R)	pACYCDuet-1 (Cm ^R)	pET or pETDuet-1 (Ap ^R)	5–7	Group A	
pRSF-1b (Kn ^R)	pCDF-1b or pCDFDuet-1 (Sm ^R Sp ^R)	pET or pETDuet-1 (Ap ^R)		3–5	Group B	
pCDF-1b (Sm ^R Sp ^R)	pRSF-1b or pRSFDuet-1 (Kn ^R)	pET or pETDuet-1 (Ap ^R)		3–5	Group B	
pRSF-1b (Kn ^R)	pET or pETDuet-1 (Ap ^R)			2–3	Group B	
pRSF-1b (Kn ^R)	pCDF-1b or pCDFDuet-1 (Sm ^R Sp ^R)			2–3	Group B	
pRSF-1b (Kn ^R)	pACYCDuet-1 (Cm ^R)			2–3	Group A	
pCDF-1b (Sm ^R Sp ^R)	pET or pETDuet-1 (Ap ^R)			2–3	Group C	
pCDF-1b (Sm ^R Sp ^R)	pRSF-1b or pRSFDuet-1 (Kn ^R)			2–3	Group B	
pCDF-1b (Sm ^R Sp ^R)	pACYCDuet-1 (Cm ^R)			2–3	Group A	

Ap: ampicillin/carbenicillin, Kn: kanamycin, Cm: chloramphenicol, Sm: streptomycin, Sp: spectinomycin

Table 3 Strain group)S	
Group A	Group B	Group C
BL21(DE3)	BL21(DE3)	BL21(DE3)
B834(DE3)	BL21(DE3)pLysS	BL21(DE3)pLysS
BLR(DE3)	B834(DE3)	B834(DE3)
HMS174(DE3)	B834(DE3)pLysS	B834(DE3)pLysS
NovaBlue(DE3)	BLR(DE3)	BLR(DE3)
Tuner TM (DE3)	BLR(DE3)pLysS	BLR(DE3)pLysS
	HMS174(DE3)	HMS174(DE3)
	HMS174(DE3)pLysS	HMS174(DE3)pLysS
	NovaBlue(DE3)	NovaBlue(DE3)
	NovaBlue(DE3)pLysS	NovaBlue(DE3)pLysS
	Rosetta TM (DE3)	Origami TM (DE3)*
	Rosetta(DE3)pLysS	Origami(DE3)pLysS*
	Rosetta 2(DE3)	Origami B(DE3)
	RosettaBlue TM (DE3)pLysS	Origami B(DE3)pLysS
	Tuner(DE3)	Rosetta(DE3)
	Tuner(DE3)pLysS	Rosetta(DE3)pLysS
		Rosetta 2(DE3)
		Rosetta-gami TM (DE3)*
		Rosetta-gami(DE3)pLysS*
		Rosetta-gami B(DE3)
		Rosetta-gami B(DE3)pLysS
		Tuner(DE3)
		Tuner(DE3)pLysS

^{*} Selection for pCDF vectors require the use of spectinomycin since these strains carry the *rpsL* mutation, conferring streptomycin resistance.

Procedures

Cloning

Cloning procedures, including vector and insert preparation and ligation reactions, are in the pET System Manual (Technical Bulletin 055). Unique restriction sites can be incorporated into an insert by PCR amplification with primers that contain the desired restriction sites (14, 15). Novagen recommends the use of the robust, high fidelity KOD HiFi, Hot Start, or XL DNA polymerases to greatly decrease the probability of generating PCR-based mutations. A high efficiency $recA^-$, $endA^-$ host strain such as NovaBlue (Cat. No. 70181-3) should be used for cloning.

Analysis of recombinants

Plasmid DNA from candidate recombinants should be verified for the presence of the correct insert and reading frame. Verification should occur prior to cotransformation into an expression host in order to isolate and analyze a single plasmid clone. Several methods available for analysis of transformants include colony PCR, restriction analysis, sequencing, and *in vitro* transcription/translation. These methods are described in the pET System Manual (Technical Bulletin 055).

pCDF-1b and pRSF-1b plasmid DNA can be isolated for transformation into expression hosts, restriction mapping, *in vitro* transcription/translation, and sequence analysis. If provided, use a low-copy number protocol from scientific literature for isolation of pCDF1b DNA and a high-copy number protocol from scientific literature for isolation of pRSF-1b DNA. For *in vitro* transcription/translation analysis, it is important that the template be RNase-free. Plasmid DNA isolated with SpinPrepTM Plasmid Kits or methods from scienfic literature may require an additional phenol:chloroform:isoamyl alcohol extraction to eliminate RNases as described in the pET system Manual.

Primers

The ACYCDuetUP1 Primer (Cat. No. 71178-3) is an appropriate upstream primer for *in vitro* transcription/translation analysis or for colony screening of pRSF-1b and pCDF-1b vectors. The T7 Promoter Primer (Cat. No. 69348-3) is an appropriate upstream primer for colony screening only. The recommended downstream primer for screening the pCDF-1b and pRSF-1b by either *in vitro* transcription/translation or colony screening is the T7 Terminator Primer (Cat. No. 69337-3).

Transformation into expression host strains

Follow the protocols given in TB009 for the transformation of pCDF-1b and pRSF-1b vectors into competent cells. For cotransformations into expression strains using supercoiled plasmid, add 1 μ l containing 1–10 ng of each plasmid. Perform the hour outgrowth prior to plating 10–70 μ l of the transformation mixture. Note that antibiotics appropriate for both vectors must be included in the plates and medium when cotransforming two vectors. Use the tables on pages 4–5 to determine appropriate expression hosts.

Induction

After the plasmids are established in a $\lambda DE3$ lysogen, expression of the target DNA can be induced by using medium generated with Overnight ExpressTM Autoinduction System components (16) or by adding IPTG. Medium produced with Overnight Express components directs high-density cell growth in the absence of induction followed by autoinduction at high cell density (See Technical Bulletin 383 for more information). If using IPTG for induction, a final concentration of 1 mM IPTG is recommended for full induction (T7*lac* promoter) at an OD₆₀₀ of 0.6. Induce for 3 h. Follow the induction protocols in the pET System Manual (TB055).

Induction analysis, protein detection, purification, and quantification

For recommendation and protocols regarding induction analysis and optimization, sample preparation, purification, detection, and quantification, review the pET System Manual (TB055) and the following Technical Bulletins as appropriate.

Coexpression experiments can result in different expression levels of target proteins (17, 18). These differences may be due to unique translation rates or the unequal copy numbers of multiple expression plasmids (13).

Detection/Assay Tools for Fusion	Гags		
His•Tag® detection	Cat. No.	Size	Technical Bulletin No./Applications
His•Tag Monoclonal Antibody	70796-4 70796-3	3 μg 100 μg	TB283 immunofluorescence, immunoprecipitation, Western blotting
His Tag AP Western Reagents	70972-3	25 blots	TB283 colorimetric detection
His•Tag AP LumiBlot TM Reagents	70973-3	25 blots	TB283 chemiluminescent detection
His•Tag HRP LumiBlot Reagents	70974-3	25 blots	TB283 chemiluminescent detection
S•Tag TM detection	Cat.No.	Size	Technical Bulletin No./Applications
S-protein AP Conjugate	69598-3	50 μ1	TB097 Western blotting
S-protein HRP Conjugate	69047-3	50 μ1	TB136 Western blotting
Biotinylated S-protein	69218-3	250 μ1	Western blotting
S-protein FITC Conjugate	69060-3	200 μ1	TB143 Immunofluorescence
S•Tag AP Western Blot Kit	69213-3	25 blots	TB082 colorimetric detection
S•Tag AP LumiBlot Kit	69099-3	25 blots	TB164 chemiluminescent detection
S•Tag HRP LumiBlot Kit	69058-3	25 blots	TB145 chemiluminescent detection
Quantitative Assay	Cat. No.	Size	Technical Bulletin No./Sensitivity
FRETWorks TM S•Tag Assay Kit	70724-3 70724-4	100 assays 1000 assays	TB251 fluorescent assay, Limit < 1 fmol
S•Tag Rapid Assay Kit	69212-3	100 assays	TB082 Limit 20 fmol
Western Blot Protein Markers	Cat. No	Size	Technical Bulletin No./Size Standards
Perfect Protein TM Western Markers	69959-3	25 lanes	TB102; 15, 25, 35, 50, 75, 100 and 150 kDa
Trail Mix TM Western Markers	70982-3	25 lanes	TB310; 15, 25, 35, 50, 75, 100 and 150 kDa, and 15, 16, 100 kDa prestained markers
Extraction Reagents	Cat. No.	Size	Technical Bulletin No./Capacity and Features
BugBuster® Protein Extraction Reagent	70584-3 70584-4	100 ml 500 ml	TB245 Use 5 ml/g wet cell paste. Tris-buffered.
BugBuster HT Protein Extraction Reagent	70922-3 70922-4	100 ml 500 ml	TB245 Use 5 ml/g wet cell paste. Tris-buffered and pre-mixed with Benzonase® Nuclease.
BugBuster 10X Protein Extraction Reagent	70921-3 70921-4	10 ml 50 ml	TB245 Dilute to 1X with choice of buffer and use 5 ml/g wet cell paste.
č	70921-5	100 ml	
BugBuster (primary amine-free) Extraction Reagent	70923-3 70923-4	100 ml 500 ml	TB245 Use 5 ml/g wet cell paste. PIPPS-buffered.
PopCulture® Reagent	71092-3 71092-4 71092-5	15 ml 75 ml 250 ml	TB323 Use 0.1 volume per ml of culture.
rLysozyme™ Solution	71110-3 71110-4 71110-5	300 KU 1200 KU 6000 KU	TB334 and TB323 Use 40 U per 1 ml of culture volume with PopCulture Reagent and 1 KU per 1 ml BugBuster Reagent.
Benzonase Nuclease, Purity > 90%	70746-3 70746-4	10,000 U 2,500 U	TB245, 323, 261 Use 25 U per ml original culture volume with PopCulture and BugBuster Reagent
Lysonase™ Bioprocessing Reagent	71230-3 71230-4 71230-5	$\begin{array}{c} 0.2 \text{ ml} \\ 1 \text{ ml} \\ 5 \times 1 \text{ ml} \end{array}$	TB361. Optimized blend of rLysozyme Solution and Benzonase Nuclease. Use 3 µl per ml lysis buffer
His•Tag [®] purification	Cat. No.	Size	Technical Bulletin No./Capacity and Features
Ni-NTA His•Bind [®] Resin	70666-3 70666-4 70666-5	10 ml 25 ml 100 ml	TB273 Capacity is 5–10 mg/ml settled resin
Ni-NTA Superflow TM	70691-3 70691-4 70691-5	10 ml 25 ml 100 ml	TB273 Capacity is 5–10 mg/ml settled resin, high flow rates and pressures
Ni-NTA Buffer Kit	70899-3		TB273 All buffers for native purification using Ni-NTA His•Bind and Ni-NTA Superflow resins.

His•Tag® purification	Cat. No.	Size	Technical Bulletin No./Capacity and Features
His•Bind [®] Resin	69670-3 69670-4 69670-5	10ml 50 ml 100ml	TB054 Capacity is 8 mg/ml settled resin
His•Bind Buffer Kit	69755-3		TB054 All buffers for native purification using His•Bind Resin
His•Bind Columns	70971-3 70971-4	pkg/5 pkg/25	$TB054\ pre\mbox{-packed},$ pre-charged; Capacity is $10\ mg\ per\mbox{column}$
His•Mag TM Agarose Beads	71002-3 71002-4	2 ml 10 ml	TB054 magnetic agarose beads, pre-charged, Capacity is 5 mg per ml settled beads
His•Bind Purification Kit	70239-3		TB054 10 ml His•Bind Resin, Buffers and Chromatography Columns
BugBuster [®] Ni-NTA His•Bind Purification Kit	70751-3		TB273 10 ml Ni-NTA His•Bind Resin, BugBuster, Benzonase and Chromatography Columns
BugBuster His•Bind Purification Kit	70793-3		TB054 10 ml His•Bind Resin and Buffer, BugBuster, Benzonase and Chromatography Columns
PopCulture [®] His•Mag Purification Kit	71114-3		TB054 Process 40×3 ml cultures purifying up to 375 μg per 3 ml culture
RoboPop TM His•Mag Purification Kit	71103-3		TB327 Purify up to 12 mg per 96 wells
RoboPop Ni-NTA His•Bind Kit	71188-3		TB346 Purify up to 96 mg per 96 wells
S•Tag [™] purification	Cat. No.	Size	Technical Bulletin No./Capacity and Features
S-protein Agarose	69704-3 69704-4	$\begin{array}{c} 2 \text{ ml} \\ 5 \times 2 \text{ ml} \end{array}$	TB087, TB160 Purify up to 1 mg per 2 ml settled resin
S•Tag Thrombin Purification Kit	69232-3		TB087 Purify and cleave up to 1 mg target protein per kit (2 ml settled resin)
S•Tag rEK Purification Kit	69065-3		TB160 Purify and cleave up to 1 mg target protein per kit (2 ml settled resin)

References

- 1. Sanchez, J., Hirst, T. R., and Uhlin, B. E. (1988) Gene 64, 265-275.
- 2. Stebbins, C. E., Kaelin, W. G., Jr., and Pavletich, N. P. (1999) Science 284, 455-461.
- 3. Shuman, S. (1990) J. Biol. Chem. 265, 11960–11966.
- 4. Li, C., Schwabe, J. W., Banayo, E., and Evans, R. M. (1997) Proc. Natl. Acad. Sci. USA 94, 2278-2283.
- 5. Ishiai, M., Sanchez, J. P., Amin, A. A., Murakami, Y., and Hurwitz, J. (1996) J. Biol. Chem. 271, 20868–20878.
- 6. Henricksen, L. A., Umbricht, C. B., and Wold, M. S. (1994) J. Biol. Chem. 269, 11121-11132.
- 7. Tan, S. (2001) Protein Expr. Purif. 21, 224–234.
- 8. Som, T. and Tomizawa, J. (1982) Mol. Gen. Genet. 187, 375-383.
- 9. Cannon, P. M. and Strike, P. (1992) Plasmid 27, 220-230.
- 10. Nijkamp, H. J., de Lang, R., Stuitje, A. R., van den Elzen, P. J., Veltkamp, E., and van Putten, A. J. (1986) *Plasmid* 16, 135–160.
- 11. Selzer, G., Som, T., Itoh, T., and Tomizawa, J. (1983) Cell 32, 119–129.
- 12. Sektas, M. and Szybalski, W. (2002) inNovations 14, 6-8.
- 13. Held, D., Yaeger, K., and Novy, R. (2003) inNovations 18, 4-6.
- 14. Novy, R. (1999) inNovations 10, 13.
- 15. Novy, R. (1999) inNovations 9, 5.
- 16. Grabski, A., Mehler, M., and Drott, D. (2003) inNovations 17, 3-6.
- 17. Novy, R., Yaeger, K., Held, D., and Mierendorf, R. (2002) inNovations 15, 2-6.
- 18. Rucker, P., Torti, F. M., and Torti, S. V. (1997) Protein Eng. 10, 967–973.

Bacterial Strain Non-distribution Agreement

By purchase of the OrigamiTM 2, OrigamiTM B, RosettaTM 2, RosettaBlueTM, Rosetta-gamiTM, Rosetta-GamiTM 2, or Rosetta-GamiTM B host strains and acceptance of the following terms, Novagen grants a limited license to use the Origami 2, Origami B, Rosetta 2, RosettaBlue, Rosetta-Gami 2, or Rosetta-Gami B host strains for the cloning and expression of genes. The intent of this license is not to limit the research use of these materials, but to protect against unauthorized commercial distribution of the strains by third parties.

- 1. The Origami 2, Origami B, Rosetta 2, RosettaBlue, Rosetta-Gami 2, or Rosetta-Gami B host strains or any derivative therefrom is not to be offered for resale or distributed outside your laboratory.
- 2. Gene clones and libraries in the Origami 2, Origami B, Rosetta 2, RosettaBlue, Rosetta-Gami 2, or Rosetta-Gami B host strains may be distributed for research purposes only, provided that the recipient acknowledge the foregoing condition.
- 3. Commercial customers must obtain a research license agreement from Brookhaven Science Associates before purchasing and using DE3 lysogens of host strains Origami 2, Origami B, Rosetta 2, RosettaBlue, Rosetta-Gami 2, or Rosetta-Gami B.

The initial purchaser may refuse to accept the above conditions by returning the kit unopened and the enclosed materials unused. By accepting or using the kit or the enclosed materials, you agree to be bound by the foregoing conditions.