

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

MYO3β, active, GST-tagged, human PRECISIO® Kinase recombinant, expressed in *Sf*9 cells

Catalog Number **M4321**Lot Number 031M0729
Storage Temperature –70 °C

Synonym: myosin IIIB

Product Description

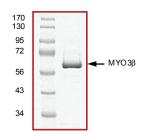
MYO3β is a member of the Class III myosins that are actin-dependent motor proteins containing an N-terminal kinase domain. MYO3β contains an N-terminal kinase domain, followed by motor, neck, and tail domains. The MYO3β gene generates a variety of splice variants that contain 1 or 2 calmodulin-binding (IQ) motifs in the neck domain and 1 of 3 domains in the tail domain. Northern blot analysis shows expression of a 7 kb MYO3β transcript in the human retina but not in a RPE cell line. The MYO3β gene transcript is also detected in the kidney, intestine, and testis. The MYO3β gene maps to chromosome 2q31.1-q31.2 by genomic sequence alignment.

This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 138995. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~63 kDa

Purity: ≥70% (SDS-PAGE, see Figure 1)

Specific Activity: 72–98 nmole/min/mg (see Figure 2)


Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Lot Number 031M0729: >90% (densitometry)

Figure 2.Specific Activity of Lot Number 031M0729: 85 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

<u>Kinase Dilution Buffer</u> – Dilute the Kinase Assay Buffer 5-fold with water.

Kinase Solution – Dilute the active MYO3 β (0.1 μ g/ μ l) with Kinase Dilution Buffer to the desired concentration. Note: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active MYO3 β kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate Myelin Basic Protein (MBP) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the active MYO3 β , Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³²P-ATP Assay Cocktail may be thawed at room temperature.
- 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μ l:

10 ul of Kinase Solution

5 μl of Substrate Solution

5 μl of cold water (4 °C)

- 3. Set up a blank control as outlined in step 2, substituting 5 μl of cold water (4 °C) for the Substrate Solution.
- 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR =
$$\frac{\text{cpm of 5} \mu \text{l of } \gamma^{-32}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7) nmole – 1.25 nmole (5 μl of 250 μM ATP Assav Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\Delta$$
cpm × (25/20)
SR × E × T

SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

- 1. Dose, A.C. et al., A class III myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome. Genomics, **79**, 621-624 (2002).
- 2. Goldman, J.M. et al., Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New Eng. J. Med., **344**, 1084-1086 (2001).

PRECISIO is a registered trademark of Sigma-Aldrich® Biotechnology LP and Sigma-Aldrich Co.

RC,MAM 03/11-1