Gen Way

C-reactive Protein

SC5b-9 Complex

C5a Complement

Alpha-fetoprotein

TNF-Binding Proteins

Myelin Basic Protein

Prostate-Specific Antigen

Prostatic Acid Phosphatase

Neuron-Specific Enolase

Thyroglobulin

C3a Complement Protein

Bb Fragment

Ferritin

Rantes

TPA

CEA

Troponin I

MIP-1 beta

Troponin T

Interleukin-8

MIP-1 alpha

Tissue Factor

Interleukin-2

Interleukin-4

TNF-Alpha

Interferon Alpha

Interferon Gamma

Interleukin-1 Beta

Interleukin-12

Interleukin-10

Interleukin-5

Interleukin-6

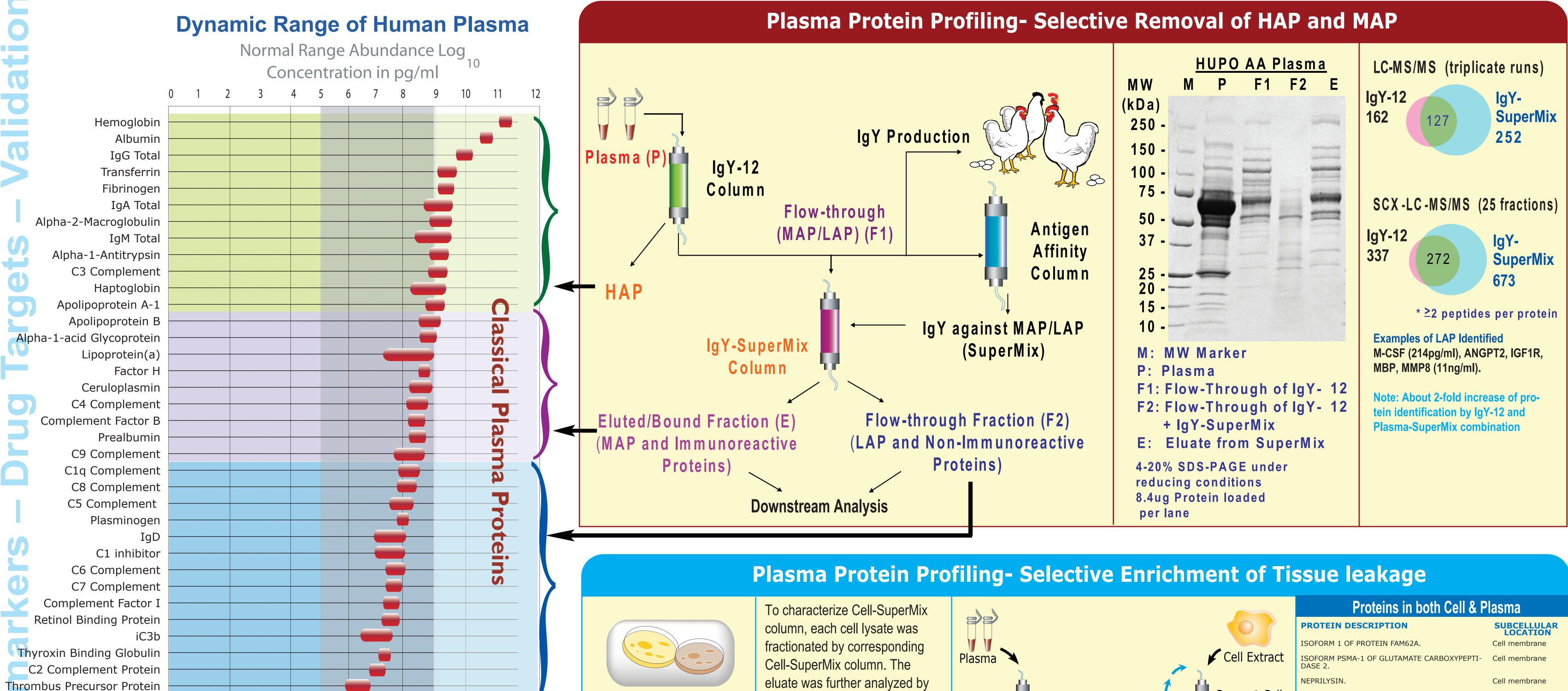
GCSF

Interleukin-1ra

Myoglobin

C-Peptide

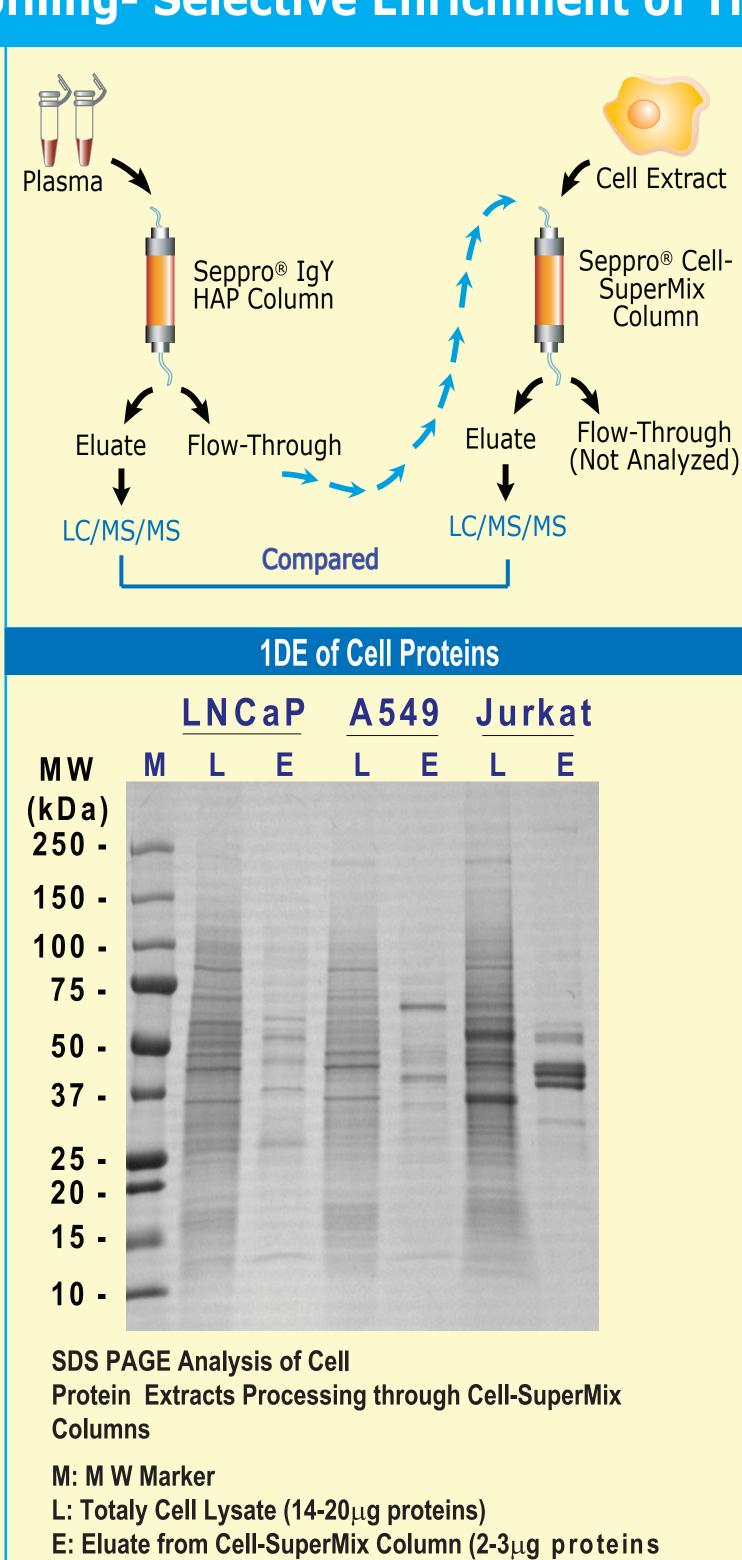
Further Development of IgY-Immunoaffinity Fractionation – SuperMix and SepproTip Technologies


Xiangming Fang¹, Lei Huang¹, Weijun Qian², David Q. Yang⁴, Angie Utleg¹, Phillip Tanabe¹, Brianne A Ogata², Kena Curran¹, Sergey Sikora¹, Kimimichi Obata³, Richard Smith², and Wei-Wei Zhang¹

- ¹ GenWay Biotech, Inc., San Diego, CA, ² Pacific Northwest National Laboratory, Richland, WA,
- ³ PSS Bio Instruments, Inc., Livermore, CA, ⁴ PSS Bio Instruments, Inc., Gaithersburg, MD.

ABSTRACT

Avian polyclonal IgY (Immunoglobulin Yolk) antibodies have unique and advantageous features that allow for highly-specific and effective capture of protein targets. Previously, we have reported development and application of IgY microbeads for the one-step removal of highly-abundant proteins (HAP) from plasma using immunoaffinity columns. However, after removal of top HAP, the next level of moderately abundance proteins (MAP) becomes an obstacle to access low abundance proteins (LAP), where the majority of biologically interesting and clinically important biomarkers reside. To tackle this challenge, we further developed the IgY-microbead system by two approaches: (1) establishing a Plasma-SuperMix column system to separate MAP from LAP; (2) developing a Cell-SuperMix column system to enrich proteins


from tissue leakage. These novel approaches enable deeper and more effective access into the population of LAP. By coupling HAP removal with SuperMix system, proteins less than 1ng/ml in plasma were detected by LC/MS/MS analysis. In addition to digging deeper, the SepproTip platform for automated, multiplex, and HTP sample preparation was developed. This system allows for processing 15 µl of each of 12 samples at a time with minimal hands-on manipulation. The turnaround time of 12 samples per 60 minutes allows large number of samples being processed without decrease in sample preparation quality. The SepproTip system makes "digging faster" possible for meeting the needs of HTP sample preparation.

eluate was further analyzed by 1DE and LC/MS/MS (LNCaP only). The next step is to test whether Cell-SuperMix column can enrich proteins of tissue leakage. Normal plasma sample was processed through LNCaP SuperMix column coupled with a IgY-14 column. Proteins bound to the SuperMix column was eluted and further analyzed by LC/MS/MS. The samples were first concentrated with Amicon ultra-15 concentrators (15 mL/5K cutoff, Millipore) followed by buffer exchange to 50 mM NH4HCO3. Protein concentration was then determined by Coomassie assay (Pierce). Proteins were then denatured with 50% tri-fluoroethanol (TFE) by incubation at 60oC for 2h, and reduced by 2 mM DTT for 1h at 37o C. Following a 5-fold dilution with 25mM NH4HCO3, proteins were digested by trypsin in an enzyme to protein ratio of 1:50 for 5h at 37oC. After digestion, peptides were lyophilized to dryness and reconstituted in 25mM NH4HCO3. Approximating 2 µg of peptides for each sample were loaded for LC-MS/MS analysis

on a LTQ ion trap instrument.

NEPRILYSIN Cell membrane Cell membrane TUBULIN BETA-2C CHAIN Cytoplasma KERATIN, TYPE I CYTOSKELETAL 10. Cytoplasma KERATIN, TYPE I CYTOSKELETAL 9. Cytoplasma PEROXIREDOXIN-2 Cytoplasma GLUCOSE-6-PHOSPHATE ISOMERASE Cytoplasma TUBA6 PROTEIN. Cytoplasma ASPARTATE AMINOTRANSFERASE, CYTOPLASMIC Cytoplasma KERATIN, TYPE II CYTOSKELETAL 1 Cytoplasma KERATIN, TYPE II CYTOSKELETAL 8 Cytoplasma 49 KDA PROTEIN Cytoplasma KERATIN, TYPE I CYTOSKELETAL 18. Cytoplasma STRESS-70 PROTEIN, MITOCHONDRIAL PRECUR Mitochondria DELTA3,5-DELTA2,4-DIENOYL-COA ISOMERASE Mitochondria COMPLEMENT COMPONENT 1 Q SUBCOMPONENT-Mitochondria Mitochondria REDUCTASE, MITOCHONDRIAL PRECURSOR. **PROHIBITIN** Mitochondrial Mitochondria NASE COMPLEX, MITOCHONDRIAL PRECURSOR Mitochondrial Mitochondria ISOFORM 1 OF 3,2-TRANS-ENOYL-COA ISOMERASE, ATP SYNTHASE SUBUNIT BETA, MITOCHONDRIAL PYRROLINE-5-CARBOXYLATE REDUCTASE 1 ISO-HEAT SHOCK PROTEIN 60. 18 KDA PROTEIN SPLICING FACTOR 3A SUBUNIT 2 Nucleus Nucleus

Lysosome

Going Faster -High-Throughput - SepproTip **Depletion Runs Neutralizing Binding Washing Eluting** Regenerationg **Blood Samples** using SepproTip IgY-HSA on APT12 The depletion efficiency is constant 8 Times Each Down Down Sample (1:25 Down 15 Times Times Collect and Pool Elution Positions 4 and 11 Bio Instruments **Position 2**

Conclusions

- Removal of Highly Abundant Protein (HAP) is an essential step to detect Low Abundant Proteins (LAP) in plasma by 2DE or MS. Immunoaffinity separation via IgY-microbead columns is the most effective tools for selective removal of HAP or selective enrichment of LAP.
- IgY Plasma-SuperMix was developed to partition the next level of Moderately Abundance Proteins (MAP). By coupling HAP removal with SuperMix column, this system enables identification of LAP and potential biomarkers at the level of less than 1ng/ml in plasma.
- o IgY Cell-SuperMix system is a novel approach to specifically enrich LAP and to detect hidden biomarkers that are tissue leakage particularly under diseased conditions.
- SepproTip automation system enables high-throughput plasma sample preparation.

Fax: 858.458.0833