

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

CDK6/Cyclin D1, active, His/GST-tagged, human PRECISIO[®] Kinase recombinant, expressed in *Sf*9 cells

Catalog Number **C1374** Storage Temperature –70 °C

Synonyms:

CDK6: PLSTIRE, MGC59692 Cyclin D1: BCL1, PRAD1, U21B31, D11S287E

Product Description

CDK6 is a member of the cyclin-dependent family of protein kinases, which are important regulators of cell cycle progression. CDK6 activity is regulated by the D-type cyclins and members of the INK4 family of CDK inhibitors. The CDK6 kinase activity is detected in mid-G₁ phase of the cell cycle and is responsible for the phosphorylation and regulation of the activity of tumor suppressor protein Rb. Although CDK6 and CDK4 can both phosphorylate multiple residues in the Rb protein, they do so with different residue selectivity *in vitro*; CDK6 phosphorylates Thr⁸²⁶ on the Rb protein. ²

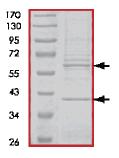
This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal His-tag on CDK6, and a GST-tag on Cyclin D1. The gene accession numbers for CDK6 and Cyclin D1 are NM 001259 and NM 053056, respectively. It is supplied in 50 mM sodium phosphate, pH 7.0, with 300 mM NaCl, 150 mM imidazole, 0.2 mM DTT, 0.1 mM PMSF, and 25% glycerol.

Molecular mass:

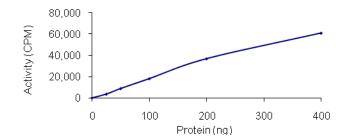
CDK6 ~40 kDa Cyclin D1 ~61 kDa

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.


Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.


Figure 1.

SDS-PAGE Gel of Typical Lot:

≥70% (SDS-PAGE, densitometry)

Figure 2.Specific Activity of Typical Lot: 7.9–10.7 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/μl BSA solution.

Kinase Solution – Dilute the active CDK6/Cyclin D1 $(0.1 \mu g/\mu l)$ with Kinase Dilution Buffer to the desired concentration.

Note: The specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active CDK6/Cyclin D1 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – A 0.2 mg/ml solution of Rb protein should be used as the substrate.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the active CDK6/Cyclin D1, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -32P-ATP Assay Cocktail may be thawed at room temperature.
- 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl:
 - 10 µl of Kinase Solution
 - 10 μl of Substrate Solution
- 3. Set up a blank control as outlined in step 2, substituting 10 μ l of cold water (4 °C) for the Substrate Solution.
- 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR =
$$\frac{\text{cpm of 5} \, \mu \text{l of } \gamma^{-32} \text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7) nmole – 1.25 nmole (5 μl of 250 μM ATP Assav Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\Delta$$
cpm × (25/20)
SR × E × T

SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

- Meyerson, M. et al., Identification of G₁ kinase activity for cdk6, a novel cyclin D partner. Molec. Cell. Biol., 14, 2077-2086 (1994).
- Takaki, T. et al., Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclindependent kinases, Cdk4 and Cdk6, *in vitro*.
 J. Biochem., 137, 381-386 (2005).

PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC.

JB.MAM 10/13-1